PD

chứng tỏ:A=1+3+3^2+...+3^10+3^11 chia hết cho cả 5 và 8,B=1+5+5^2+...+5^7+5^8 chia hết cho 31

 

VP
18 tháng 10 2023 lúc 17:00

Ta có:

\(A=1+3+3^2+...+3^{10}+3^{11}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=40+...+3^8.\left(1+3+3^2+3^3\right)\)

\(A=40+...+3^8.40\)

\(A=40.\left(1+...+3^8\right)\)

Vì \(40⋮5\) và \(8\) nên \(40.\left(1+...+3^8\right)⋮5\) và \(8\)

Vậy \(A⋮5\) và \(8\)

_________

Ta có:

\(B=1+5+5^2+...+5^7+5^8\)

\(B=\left(1+5+5^2\right)+...\left(5^6+5^7+5^8\right)\)

\(B=31+...+5^6.\left(1+5+5^2\right)\)

\(B=31+...+5^6.31\)

\(B=31.\left(1+...+5^6\right)\)

Vì \(31⋮31\) nên \(31.\left(1+...+5^6\right)⋮31\)

Vậy \(B⋮31\)

\(#WendyDang\)

Bình luận (0)

Các câu hỏi tương tự
FE
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết
NH
Xem chi tiết
OO
Xem chi tiết
OO
Xem chi tiết
QN
Xem chi tiết
QB
Xem chi tiết
H24
Xem chi tiết