Những câu hỏi liên quan
CH
Xem chi tiết
NT
12 tháng 5 2023 lúc 14:42

a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm

b: ΔHAC vuông tại H có HN vuông góc AC

nên HN^2=NA*NC

Bình luận (0)
8D
Xem chi tiết
NL
29 tháng 11 2021 lúc 13:02

helo duy

Bình luận (0)
NL
29 tháng 11 2021 lúc 13:03

helo duy

Bình luận (0)
NL
29 tháng 11 2021 lúc 13:04

 

Karuhi16/11/2020

Giải thích các bước giải: (Hình bạn tự vẽ nha, mình hơi lười chụp)

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

b. C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

c. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

d. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

 

Bình luận (1)
8D
Xem chi tiết
HN
Xem chi tiết
AL
30 tháng 11 2021 lúc 19:15

a. MN = ?

Trong ΔABC có:

  M là trung điểm AB (gt)

  N là trung điểm AC (gt)

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC (t/c)

Mà BC = 6cm (gt)

⇒ MN=BC/2=6/2=3(cm)

b. C/m: BMNC là hình thang cân

Có MN là đường trung bình ΔABC

⇒ MN//BC

⇒ BMNC là hình thang 

Mà góc ABC = góc ACB (ΔABC cân tại A)

⇒ BMNC là hình thang cân (DHNB)

c. C/m: ABCK là hình bình hành

Xét tứ giác ABCK có:

  N là trung điểm AC (gt)

  N là trung điểm BK (K đ/x với B qua M)

⇒ ABCK là hình bình hành (DHNB)

d. C/m: AHBP là hình chữ nhật

Xét tứ giác AHBP có:

  M là trung điểm AB (gt)

  M là trung điểm PH ( H đ/x với P qua M)

⇒ AHBP là hình bình hành (DHNB)

Có ΔABC cân tại A

⇒ AP là trung tuyến đồng thời là đg cao

⇒ góc APB = 90 độ

⇒ AHBP là hình chữ nhật (DHNB)

Bình luận (0)
AL
30 tháng 11 2021 lúc 19:18

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 5 2021 lúc 11:31

a)

*Tính BC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

Bình luận (0)
NT
15 tháng 5 2021 lúc 11:31

a) 

*Tính BE

Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: BA=BE(hai cạnh tương ứng)

mà BA=6cm(gt)

nên BE=6cm

Vậy: BE=6cm

Bình luận (0)
NT
15 tháng 5 2021 lúc 11:33

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(cmt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Bình luận (0)
PL
Xem chi tiết
NM
17 tháng 10 2021 lúc 9:06

a, Vì D,E là trung điểm AB,AC nên DE là đtb tg ABC

Do đó \(DE=\dfrac{1}{2}BC;DE//BC\)

Vậy BDEC là hình thang

b, Vì \(DE=\dfrac{1}{2}BC\) nên \(DE=BM\left(=\dfrac{1}{2}BC\right)\)(do M là trung điểm BC)

Mà DE//BC nên DE//BM

Do đó BDEM là hình bình hành

Bình luận (0)
KT
Xem chi tiết
NT
1 tháng 3 2022 lúc 22:52

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó; ΔABM=ΔACM

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF và ME=MF

hay ΔMEF cân tại M

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

Bình luận (0)
HA
Xem chi tiết
OH
Xem chi tiết
NT
1 tháng 11 2023 lúc 22:53

a: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

=>ΔABC nội tiếp (M)

b: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=5\left(cm\right)\)

=>R=5cm

Bình luận (0)