Tính giá trị của biểu thức (a+b)+c với:
A) a=1945,b=1980,c=1930
B) a=2023,b+c = 1977
Cho ba số a,b,c thỏa mãn a^2+b^2+c^2=27 và a+b+c=9.
Tính giá trị của biểu thức: (a-4)^2021+(b-4)^2022+(c-4)^2023
có lời giải giúp mình với
Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27$
$\Rightarrow a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2(a^2+b^2+c^2)=2(ab+bc+ac)$
$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$
$\Rightarrow a=b=c$
Mà $a+b+c=9$ nên $a=b=c=3$.
Khi đó:
$(a-4)^{2021}+(b-4)^{2022}+(c-4)^{2023}=(-1)^{2021}+(-1)^{2022}+(-1)^{2023}$
$=(-1)+1+(-1)=-1$
cho 3 số a,b,c khác 0 thỏa mãn : a/b + b/c + c/a = b/a + a/c + c/b. tính giá trị của biểu thức p = (a - b) (b - c) (c - a) (a + 2b + 3c) 2022 + 2023
Cho ba số a,b,c thỏa mãn :
+) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
+) \(a+b+c=2022\\ \)
Tính giá trị của biểu thức P = \(\left(a^{2019}+b^{2019}\right)\left(c^{2021}+b^{2021}\right)\left(a^{2023}+c^{2023}\right)\)
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
hay \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
-Xét a + b = 0 => P = 2022^2021
Bạn xét tương tự với b + c = 0 và c + a = 0 dc P = 2022^2021 nhé
a+bab+a+bc(a+b+c)=0a+bab+a+bc(a+b+c)=0
(a+b)[ab+bc+ca+c2abc(a+b+c)]=0(a+b)[ab+bc+ca+c2abc(a+b+c)]=0
(a+b)(b+c)(c+a)=0(a+b)(b+c)(c+a)=0
⇔ a=−b
⇔ b=−c
⇔ c=−a
Thay vào P từng cái rồi tính tiếp nhé
tớ cần hỏi bài tập toán như sau:
cho a+b+c = 2023 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=\dfrac{1}{2023}\)
tính giá trị biểu thức: Q = \(\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\)
Giúp với:
Cho a^2+b^2+c^2 = a^3+b^3+c^3 = 1 Tính giá trị biểu thức: C = a^2+b^9+c^1945
Giúp với:
Cho a^2+b^2+c^2 = a^3+b^3+c^3 = 1 Tính giá trị biểu thức: C = a^2+b^9+c^1945
Với a, b, c là các số thực thỏa mãn abc=2023. Tính giá trị biểu thức
P=\(\dfrac{1}{bc\left(b+c\right)+2023}\)+\(\dfrac{1}{ca\left(c+a\right)+2023}\)+\(\dfrac{1}{ab\left(a+b\right)+2023}\)
\(P=\dfrac{1}{bc\left(b+c\right)+2023}+\dfrac{1}{ca\left(c+a\right)+2023}+\dfrac{1}{ab\left(a+b\right)+2023}\left(abc=2023\right)\)
\(\Leftrightarrow P=\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}+\dfrac{1}{ab\left(a+b\right)+abc}\)
\(\Leftrightarrow P=\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}+\dfrac{1}{ab\left(a+b+c\right)}\)
\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\)
\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{a^2bc+b^2ca+c^2ab}{\left(abc\right)^2}\right]\)
\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{abc\left(a+b+c\right)}{\left(abc\right)^2}\right]\)
\(\Leftrightarrow P=\dfrac{1}{abc}=\dfrac{1}{2023}\)
Bài 4: Cho a^2+b^2+c^2 = a^3+b^3+c^3 =1
Tính giá trị của biểu thức: C= a^2+b^9+c^1945
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))