H24

Với a, b, c là các số thực thỏa mãn abc=2023. Tính giá trị biểu thức
P=\(\dfrac{1}{bc\left(b+c\right)+2023}\)+\(\dfrac{1}{ca\left(c+a\right)+2023}\)+\(\dfrac{1}{ab\left(a+b\right)+2023}\)

NT
19 tháng 9 2023 lúc 9:12

\(P=\dfrac{1}{bc\left(b+c\right)+2023}+\dfrac{1}{ca\left(c+a\right)+2023}+\dfrac{1}{ab\left(a+b\right)+2023}\left(abc=2023\right)\)

\(\Leftrightarrow P=\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}+\dfrac{1}{ab\left(a+b\right)+abc}\)

\(\Leftrightarrow P=\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}+\dfrac{1}{ab\left(a+b+c\right)}\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{a^2bc+b^2ca+c^2ab}{\left(abc\right)^2}\right]\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{abc\left(a+b+c\right)}{\left(abc\right)^2}\right]\)

\(\Leftrightarrow P=\dfrac{1}{abc}=\dfrac{1}{2023}\)

Bình luận (0)

Các câu hỏi tương tự
DQ
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
DM
Xem chi tiết
CL
Xem chi tiết
MS
Xem chi tiết
TM
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết