Những câu hỏi liên quan
H24
Xem chi tiết
NT
1 tháng 8 2023 lúc 9:07

\(A=1+2+2^2+...+2^{2020}+2^{2021}+2^{2023}\)

\(A=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2020}\left(1+2+2^2\right)-2^{2022}+2^{2023}\)

\(A=1+2.7+2^4.7+...+2^{2020}.7-2^{2022}+2^{2023}\)

\(A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\left(1\right)\)

Ta có :

\(2^3=8\equiv1\) (mod 7)

\(\Rightarrow\left(2^3\right)^{674}\equiv1^{674}=1\) (mod 7)

\(\Rightarrow2^{2022}\equiv1\) (mod 7)

\(\Rightarrow2^{2022}+1\equiv1+1=2\)  (mod 7)

\(\Rightarrow2^{2022}+1\equiv2\) (mod 7)

mà \(7\left(2+2^4+...+2^{2020}\right)⋮7\)

\(\left(1\right)\Rightarrow A=7\left(2+2^4+...+2^{2020}\right)+\left(2^{2022}+1\right)\equiv2\) (mod 7)

Vậy số dư của A khi chia cho 7 là 2

Bình luận (0)
LU
Xem chi tiết
LU
5 tháng 11 2021 lúc 17:05

giúp nhanh lên

Bình luận (0)
 Khách vãng lai đã xóa
CN
23 tháng 11 2021 lúc 8:44

cứ như thế số dư bằng 0

Bình luận (0)
 Khách vãng lai đã xóa
BK
Xem chi tiết
BK
Xem chi tiết
TC
Xem chi tiết
AH
24 tháng 11 2021 lúc 11:28

Lời giải:

Theo định lý Fermat nhỏ thì: $3^{10}\equiv 1\pmod {11}; 4^{10}\equiv 1\pmod {11}$

$\Rightarrow$:

$3^{2021}=(3^{10})^{202}.3\equiv 3\pmod {11}$

$4^{2021}=(4^{10})^{202}.4\equiv 4\pmod {11}$

$\Rightarrow A=3^{2021}+4^{2021}\equiv 3+4\equiv 7\pmod {11}$

Tức $A$ chia $11$ dư $7$

---------------------------------

Tương tự:

$3^{12}\equiv 1\pmod {13}$

$\Rightarrow 3^{2021}=(3^{12})^{168}.3^5\equiv 3^5\equiv 9\pmod {13}$

Tương tự: $4^{2021}\equiv 4^5\equiv 10\pmod {13}$

$\Rightarrow A\equiv 9+10\equiv 6\pmod {13}$

Vậy $A$ chia $13$ dư $6$

Bình luận (0)
NA
Xem chi tiết
PL
30 tháng 7 2023 lúc 20:38

\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\\ \left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\\ \left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\\ 57\left(1+7^3+7^6+...+7^{2018}\right)⋮57\)

Bình luận (0)
TT
30 tháng 7 2023 lúc 20:43

A=1+7+72+...+72019+72020

=1+(7+72+73)+(74+75+76)+...+(72018+72019+72020)

=1+7(1+7+72)+74(1+7+72)+...+72018(1+7+72)

=1+7x57+74x57+...+72018x57=1+57(7+74+...+72018)

=>A chia cho 57 dư 1.vì 57(7+74+...+72018)⋮57.

Bình luận (0)
HN
Xem chi tiết
HF
12 tháng 8 2020 lúc 22:41

Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)

- Chứng minh A chia hết cho 2:
 +) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2

 +) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2

- Chứng minh A chia hết cho 3:
 +) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3

 +) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:

 +) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5

 +) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5

Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)

\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NT
14 tháng 7 2023 lúc 21:06

\(S=1+2-3-4+5+6-7-8+9-10-...+2018-2019-2020-2021\)

\(S=1+\left(2-3\right)-4+5+\left(6-7\right)-8+9-10-...+\left(2018-2019\right)-2020-2021\)

\(S=1-1+1-1+...-1-2020-2021=-1-2020-2021=-4042\)

b) Tích của số chia và thương là :

\(89-12=77\)=7.11

⇒ Số chia là 11; thương là 7

 

Bình luận (0)
HN
14 tháng 7 2023 lúc 21:11

cộng 2021 nha bn

 

Bình luận (0)
HN
18 tháng 7 2023 lúc 13:05

d

Bình luận (0)
HM
Xem chi tiết
NT
5 tháng 10 2021 lúc 21:30

Bài 1:

a: \(5x^3+10xy=5x\left(x^2+2y\right)\)

b: \(x^2+14x+49-y^2\)

\(=\left(x+7\right)^2-y^2\)

\(=\left(x+7+y\right)\left(x+7-y\right)\)

Bình luận (0)