Những câu hỏi liên quan
NL
Xem chi tiết
AH
16 tháng 9 2023 lúc 23:07

Lời giải:

$x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}+\frac{1}{100}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}+\frac{1}{100}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}$

$=1$

Bình luận (0)
KR
16 tháng 9 2023 lúc 23:10

`# \text {DNamNgV}`

\(x-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}-...-\dfrac{1}{98\cdot99}=\dfrac{1}{100}+\dfrac{1}{99\cdot100}\)

\(\Rightarrow x-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}\right)=\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow x-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)=\dfrac{1}{99}\)

\(\Rightarrow x-\left(1-\dfrac{1}{99}\right)=\dfrac{1}{99}\)

\(\Rightarrow x-\dfrac{98}{99}=\dfrac{1}{99}\)

\(\Rightarrow x=\dfrac{1}{99}+\dfrac{98}{99}\)

\(\Rightarrow x=\dfrac{99}{99}\)

\(\Rightarrow x=1\)

Vậy, `x = 1.`

Bình luận (0)
H24
Xem chi tiết
YC
23 tháng 3 2017 lúc 20:23

1/1.2 + 1/2.3 + .................+ 1/99.100 =

1/1 - 1/2 + 1/2 - 1/3 +....................+ 1/99 - 1/100 =

1/1 - 1/100                                                         =   99/100

Bình luận (0)
NT
23 tháng 3 2017 lúc 20:22

98.99/99.100

Bình luận (0)
HD
23 tháng 3 2017 lúc 20:23

99/100

Bình luận (0)
NT
Xem chi tiết
H24
10 tháng 5 2022 lúc 19:25

`1/( 1.2 ) + 1/( 2.3 ) + .......+1/(99.100)`

`= 1-1/2+1/2-1/3+.....+1/99-1/100`

`=1-1/100`

`=99/100`

Bình luận (0)
NT
10 tháng 5 2022 lúc 19:25

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100=99/100

Bình luận (0)
MH
10 tháng 5 2022 lúc 19:25

\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

Bình luận (0)
TN
Xem chi tiết
NB
8 tháng 4 2017 lúc 21:31

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

vì \(\frac{99}{100}< 1\)

nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)

Bình luận (0)
NM
8 tháng 4 2017 lúc 21:29

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}< 1\)

Vậy A<1

Bình luận (0)
H24
8 tháng 4 2017 lúc 21:31

Ta có: \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

=>\(A=1-\frac{1}{100}\)

Vì \(\frac{1}{100}>0\Rightarrow\)\(1-\frac{1}{100}< 1\)hay A<1

Bình luận (0)
H24
Xem chi tiết
NM
12 tháng 4 2016 lúc 10:13

Toán tiểu học: dang phân số có tử số là hiệu của hai thừa số ở mẫu

Bình luận (0)
PH
12 tháng 4 2016 lúc 10:14

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
TN
12 tháng 4 2016 lúc 10:59

Gọi tổng trên là A

A = 1/1.2 + 1/2.3 +......+ 1/99.100

A = 1 - 1/2 + 1/2 - 1/3 +.......+1/99 - 1/100

A = 1 - 1/100

A = 99/100

Bình luận (0)
NN
Xem chi tiết
TM
2 tháng 9 2016 lúc 22:01

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
SG
2 tháng 9 2016 lúc 22:02

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
DS
2 tháng 9 2016 lúc 22:03

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

Bạn có thể chứng minh dòng trên bằng cách quy đồng.

Khử các phân số đối nhau:

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
SS
Xem chi tiết
DT
17 tháng 11 2014 lúc 19:27

Áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

VT=\(x-\left(\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-...\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{99}-\frac{1}{100}\right)\right)\)

=\(x-\frac{1}{100}\)

Dễ dàng tìm được 

\(x-\frac{1}{100}=\frac{1}{100}\) 

\(x=\frac{1}{50}\)

Bình luận (0)
DP
Xem chi tiết
PQ
3 tháng 3 2018 lúc 10:05

Ta có : 

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\)\(1-\frac{1}{100}\)

\(=\)\(\frac{99}{100}\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}=\frac{99}{100}\)

Chúc bạn học tốt ~

Bình luận (0)
HM
3 tháng 3 2018 lúc 10:34

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

                                                              \(=1-\frac{1}{100}=\frac{99}{100}\)

ĐÚNG 100%

                                                               

Bình luận (0)
H24
3 tháng 3 2018 lúc 12:05

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
NT
Xem chi tiết
TV
23 tháng 4 2016 lúc 21:38

Bài 1:

a) A=1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100

A=1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100

A=1-1/100

A=99/100

b) B=1/3.5+1/5.7+1/7.9+...+1/145.147

Ta nhân biểu thức trên với 2 ta được

B=2/3.5+2/5.7+2/7.9+...+2/145.147

B=2.(1/3.5+1/5.7+1/7.9+...+1/145.147)

B=2.(1/3-1/5+1/5-1/7+1/7-1/9+...+1/145-1/147)

B=2.(1/3-1/147)

B=2.16/49

B=32/49

Bài 2:

Ta có: 4/11<x/20<5/11

=> 88/220<11x/220<100/220

=> 80<11x<100

=> 11x thuộc {88;99} 

=> x thuộc {8;9}

Bình luận (0)
NT
23 tháng 4 2016 lúc 21:40

bạn thuysvaan ơi làm lại câu A đc ko 

Bình luận (0)
TA
24 tháng 4 2016 lúc 8:50

rykrkajkkgjrkjalgjdfk jsdakgj

Bình luận (0)