Những câu hỏi liên quan
KD
Xem chi tiết
NT
10 tháng 8 2023 lúc 21:58

Sửa đề: Đường trung tuyến AM

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

góc B=góc C

=>ΔBEM=ΔCFM

b: ΔBEM=ΔCFM

=>BE=CF và ME=MF

AE+EB=AB

AF+FC=AC

mà EB=FC và AB=AC

nên AE=AF

mà ME=MF

nên AM là trung trực của EF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

Bình luận (0)
JW
11 tháng 8 2023 lúc 9:16

a: ΔBEM=ΔCFM

b: AM là trung trực của EF

c: EF//BC

Bình luận (0)
NN
Xem chi tiết
NM
26 tháng 12 2021 lúc 13:40

undefined

Bình luận (0)
DA
Xem chi tiết
HT
30 tháng 4 2021 lúc 21:00

a là j ạ

 

Bình luận (0)
TT
30 tháng 4 2021 lúc 21:44

b) ta có tam giác ABC cân

=> \(\widehat{B}=\widehat{C}=180-\widehat{A}\)  (1)

mà AM là trung tuyến => AM cx là phân giác và AM cx là đường cao (t/c tam giác cân)

=>\(\widehat{A1}=\widehat{A2}\)

xét tam giác AEM và tam giác AfM

có AM chung

\(\widehat{E}=\widehat{F}\)=90o

\(\widehat{A1}=\widehat{A2}\)

=> tam giác AEM =tam giác AFM (CH-GN)

=> AE =AC (2 cạnh tương ứng)

=> tam giác AEF cân ở \(​​\widehat{A}\)

=> \(\widehat{E}=\widehat{F}=180-\widehat{A}\) (2)

từ 1 và 2 =>\(\widehat{E}=\widehat{B}\) mà 2 góc ở vt đồng vị 

=> EF // BC 

mà AM ⊥ BC 

=> EF ⊥ AM

=> AM là trung trực của EF (t/c tam giác cân)

 

Bình luận (1)
NT
30 tháng 4 2021 lúc 22:58

b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có 

MB=MC(M là trung điểm của BC)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔEMB=ΔFMC(cạnh huyền-góc nhọn)

Suy ra: ME=MF(hai cạnh tương ứng) và EB=FC(Hai cạnh tương ứng)

Ta có: AE+EB=AB(E nằm giữa A và B)

AF+FC=AC(F nằm giữa A và C)

mà EB=FC(cmt)

và AB=AC(ΔBAC cân tại A)

nên AE=AF

Ta có: AE=AF(cmt)

nên A nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: ME=MF(cmt)

nên M nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của EF(Đpcm)

Bình luận (0)
SN
Xem chi tiết
NN
Xem chi tiết
NT
7 tháng 1 2022 lúc 9:59

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

b: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

=>AE=3cm

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

=>AF=4cm

\(S_{AEMF}=AE\cdot AF=3\cdot4=12\left(cm^2\right)\)

c: Xét tứ giác ABNC có

M là trung điểm của BC

M là trung điểm của AN

Do đó: ABNC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABNC là hình chữ nhật

Bình luận (1)
NL
Xem chi tiết
KS
5 tháng 8 2021 lúc 11:06

undefined

a) Xét ΔABM và ΔACM có:

AB = AC (ΔABC cân tại A)
Cạnh AM chung

BM = CM (AM là đường trung tuyến của BC)

⇒ ΔABM = ΔACM (c.c.c)

Vậy ΔABM = ΔACM

Bình luận (0)
NM
Xem chi tiết
DL
12 tháng 7 2016 lúc 23:09

a./ \(\Delta BEM=\Delta CFM\)vì:

góc BEM = góc CFM ( = 90o )góc EBM = góc FCM (2 góc bằng nhau của tam giác cân ABC tại A)=> góc EMB = góc FMC ( = 180o - 2 góc bằng nhau)MB = MC (vì AM là trung tuyến).

b./ => ME = MF (cạnh tương ứng của 2 tam giác bằng nhau) => M nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (1)

\(\Delta BEM=\Delta CFM\)=> BE = CF => AE = AF ( vì cùng bằng AB - BE = AC - CF)

=> A nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (2)

Từ (1) (2) => AM là trung trực của EF.

Bình luận (0)
NE
Xem chi tiết
NT
23 tháng 4 2023 lúc 21:52

a: Xét ΔEBM vuông tại E và ΔFCM vuông tại F có

MB=MC

góc B=góc C

=>ΔEBM=ΔFCM

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ME=MF

=>ΔAEM=ΔAFM

=>AE=AF

mà ME=MF

nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

d: Xet ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

=>ΔABD=ΔACD
=>BD=CD
=>D nằm trên trung trực của BC

=>A,M,D thẳng hàng

Bình luận (0)
HM
Xem chi tiết
VT
6 tháng 5 2022 lúc 18:16

a) Xét AMB và AMC                                                                                                               

ta có: AB=AC ( vì ABC cân tại A  )                                                                                                 

          BM=MC ( vì AM là đường trung tuyến )                                                                             

          AM: cạnh chung                                                                                                   

Suy ra: AMB = AMC ( c.c.c )

Bình luận (0)