Những câu hỏi liên quan
PD
Xem chi tiết
NM
16 tháng 11 2021 lúc 8:14

\(=6x\left(x+2y\right)+5\left(x+2y\right)=\left(6x+5\right)\left(x+2y\right)\)

Bình luận (0)
H24
16 tháng 11 2021 lúc 8:14

\(=6x\left(x+2y\right)+5\left(x+2y\right)=\left(x+2y\right)\left(6x+5\right)\)

Bình luận (0)
LT
Xem chi tiết
H24
5 tháng 10 2019 lúc 20:00

Gợi ý:

Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)

Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:

\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)

Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.

Bình luận (0)
HN
5 tháng 10 2019 lúc 20:09

(x + 1)(x + 2)(x + 3)(x + 4) - 8

= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8

= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8

= (x2 + 5x + 4)(x2 + 5x + 6) - 8

Đặt x2 + 5x + 5 = t

⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)

Thay t = x2 + 5x + 5 vào (1), ta có:

(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9

= (t - 3)(t + 3)

⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)

= (x2 + 5x + 2)(x2 + 5x + 8)

Chúc bạn học tốt !!!!!!!! vuivuivui

Bình luận (0)
PL
5 tháng 10 2019 lúc 20:16

(x+1)(x+2)(x+3)(x+4)-8

= [(x+1)(x+4)][(x+2)(x+3)]-8

= (x2+4x+x+4)(x2+3x+2x+6)-8

= (x2+5x+5-1)(x2+5x+5+1)-8

= (x2+5x+5)2-12-8

= (x2+5x+5)2-9

= (x2+5x+5) -32

= (x2+5x+5-3)(x2+5x+5+3) {HĐT số 3}

= (x2+5x+2)(x2+5x+8)

Bình luận (0)
HT
Xem chi tiết
PT
Xem chi tiết
H24
29 tháng 9 2017 lúc 14:19

Bạn Sonic đã giải hết rồi^^ 
Giờ mình chỉ cho bạn 1 phương pháp nhỏ thôi nhé, để sau này bài phân tích đa thức thành nhân tử nào cũng làm được hết. Đó là phương pháp nhẩm nghiệm. Vì đầu năm lớp 8 chắc chỉ cho đa thức nghiệm nguyên thôi nên xài cái này là khỏe, bậc mấy cũng làm được hết. 
PP này như sau: 
Bạn cần biết Định lý: 1 đa thức nếu có nghiệm nguyên thì nghiệm đó sẽ là ước của hệ số tự do. 
VD: 
2) x^3-7x-6. Đầu tiên ta xét các nghiệm của 6 là 1;-1;2;-2;3;-3;6;-6 xem ước nào là nghiệm. 
Ta có: x = 1 => x^3 - 7x - 6 = 1^3 - 7.1 + 6 = 1 - 7 + 6 = 0 => 1 là nghiệm đa thức. 
=> Đa thức có nhân tử x - 1. 
Bạn có thể xét tiếp sẽ thấy các nghiệm khác, nhưng ta chỉ cần 1 nghiệm là đủ rồi. 
Bạn xét x^3 - 7x - 6. Ta phải phân tích đa thức này ra dạng (x - 1)(x^2 + ax + b) (do đây là đa thức bậc 3) 
Đầu tiên xét x^3. Để rút x - 1 ra thì ở ngoài ngoặc phải có x^2. Vậy ta cứ ghi: 
x^3 - 7x - 6 

= x^2 (x - 1) 
Sau đó bạn nhân ngược lên và viết kết quả ở dòng 2 
Ta có:x^3 - 7x - 6 
= x^3 - x^2 
= x^2 (x - 1) 
Tiếp theo xét -x^2. Đề không có -x^2 nên phải + x^2 vào để mất đi. 
x^3 - 7x - 6 
= x^3 - x^2 + x^2 
= x^2 ( x - 1) 
Tiếp theo xét x^2. Để có nhân tử x - 1 phải rút x ra ngoài. Ta ghi: 
x^3 - 7x - 6 
= x^3 - x^2 + x^2 
= x^3 (x - 1) + x^2 (x - 1) 
Sau đó bạn nhân lên và ghi lại ở dòng 2: 
x^3 - 7x - 6 
= x^3 - x^2 + x^2 - x 
= x^3 (x - 1) + x^2 (x - 1) 
Tiếp theo xét -x. Đề bài là -7x vậy phải thêm -6x vào. Tới đây bạn ghi cả hệ số tự do: 
x^3 - 7x - 6 
= x^3 - x^2 + x^2 - x - 6x + 6 
= x^2(x - 1) + x(x - 1) - 6(x - 1) 
= (x - 1)(x^2 + x - 6) 
Các bài khác làm tương tự nhé. 
3) 6x^3-17x^2+14x-3 
Nhẩm nghiệm, thấy x = 1 là nghiệm đa thức => có nhân tử x - 1 
6x^3-17x^2+14x-3 = 6x^3 - 6x^2 -11x^2 + 11x + 3x - 3 = 6x^2(x - 1) - 11x(x - 1) + 3(x - 1) 
= (x - 1)(6x^2 - 11x + 3)

Bình luận (0)
TM
29 tháng 9 2017 lúc 17:15

Đặt x2+5x+4=t ta được:

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=t\left(t+2\right)-24=t^2+2t-24\)

\(=t^2+6t-4t-24=t\left(t+6\right)-4\left(t+6\right)=\left(t-4\right)\left(t+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

Bình luận (0)
KT
20 tháng 10 2018 lúc 14:40

Đặt x2+5x+4=t ta được:

(x + 1)(x + 2)(x + 3)(x + 4)−24

= [(x + 1)(x + 4)][(x + 2)(x + 3)] − 24

= (x^2 + 5x + 4)(x^2 + 5x + 6)−24

= t(t + 2) − 24 = t^2 + 2t − 24

= (t − 4)(t + 6)

đến đây thay trở lại

Bình luận (0)
H24
Xem chi tiết
HN
10 tháng 7 2016 lúc 17:23

\(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left[\left(x-1\right)\left(x-7\right)\right].\left[\left(x-3\right)\left(x-5\right)\right]-20\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)

Đặt \(x^2-8x+11=t\) \(\Rightarrow\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20=\left(t-4\right)\left(t+4\right)-20=t^2-16-20=t^2-36=\left(t-6\right)\left(t+6\right)\)\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20=\left(x^2-8x+11-6\right)\left(x^2-8x+11+6\right)=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)

Bình luận (0)
H24
Xem chi tiết
BA
28 tháng 7 2017 lúc 21:06

Ta có:

\(x^3-x^2-x-2=x^3-2x^2+x^2-2x+x-2\)

\(=x^2\left(x-2\right)+x\left(x-2\right)+x-2=\left(x-2\right)\left(x^2+x+1\right)\)

Bình luận (0)
H24
Xem chi tiết
PK
Xem chi tiết
NT
17 tháng 5 2016 lúc 11:54

\(3\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2-x^2-x\right)\)

Bình luận (0)
NV
17 tháng 5 2016 lúc 10:08

3(x2+x2+1) hay 3(x2+x+1) vậy ??

Bình luận (0)
HU
Xem chi tiết
NT
28 tháng 5 2022 lúc 10:49

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

Bình luận (0)