Rút gọn ((x + sqrt(x) + 1)/(x * sqrt(x) - 1) + 1/(sqrt(x) - 1)) / (6/(x - 1)) với x > 0 và x khác 1
Cho biểu thức P= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{3}{\sqrt{x}+1}\)-\(\dfrac{6\sqrt{x}-4}{x-1}\) Với x >=0 , x khác 1
a) Rút gọn biểu thức ( câu này mình rút gọn = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\))
b) Tìm giá trị của x để P =-1
c) Tìm x thuộc z để P thuộc z
d) Só ánh P với 1
e)Tìm giá trị nhỏ nhất của P
mình đag cần gấp ạ!
a) \(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp đk:
\(\Rightarrow x\in\left\{0\right\}\)
d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)
\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}\in Z\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow2⋮\sqrt{x}+1\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\\ \Leftrightarrow x\in\left\{0;1\right\}\)
\(d,P=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Có \(\dfrac{2}{\sqrt{x}+1}>0\left(2>0;\sqrt{x}+1>0\right)\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}< 1\Leftrightarrow P< 1\)
\(e,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Có \(\sqrt{x}+1\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)
\(P_{min}=-1\Leftrightarrow x=0\)
Rút gọn \(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{\sqrt{x}-1}{x+\sqrt{x}}+\dfrac{1-\sqrt{x}}{\sqrt{x}}\right)\) với x>0,x khác 1
\(=\left(\dfrac{1-x}{\sqrt{x}}\right):\dfrac{\sqrt{x}-1+1-x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{1-x}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\)
\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\cdot\left(\sqrt{x}+1\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
Rút gọn Biểu thức sau:
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2.\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)với x lớn hơn 0 và x khác 1
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)
\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)
\(=\left(1-x\right).2\sqrt{x}\)
\(=2\sqrt{x}-2x\sqrt{x}\)
Rút gọn A=\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{\sqrt{x}-1}{x+\sqrt{x}}+\dfrac{1+\sqrt{x}}{\sqrt{x}}\right)\) với x>0,x khác 1
\(A=\dfrac{1-x}{\sqrt{x}}:\dfrac{\sqrt{x}-1+x+2\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{1-x}{x+3\sqrt{x}}\)
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
Rút gọn biểu thức:
1, \(B=\left(\dfrac{x.\sqrt{x}+x+\sqrt{x}}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}+3}{1-\sqrt{x}}\right).\dfrac{x-1}{2x+\sqrt{x}-1}\)với x>-0, x khác 1, x khác \(\dfrac{1}{4}\)
2, \(A=\dfrac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\) với x\(\ge\)0:x\(\ne\)0
Cho biểu thức A=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)và B= \(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}-\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\) 9x>/ 0 , x khác 4 , x khác 9 )
a) Rút gọn A và tính A khi x = 1
b) Rút gọn B
Rút gọn \(\left(\dfrac{3\sqrt{x+1}+2}{\sqrt{x+1}-2}\right)\dfrac{1}{\sqrt{x+1}}\) với x > 0,x khác 3
Đặt \(\sqrt{x+1}=a\)
=>\(A=\dfrac{3a+2}{a-2}\cdot\dfrac{1}{a}=\dfrac{3a+2}{a\left(a-2\right)}\)
\(=\dfrac{3\sqrt{x+1}+2}{x+1-2\sqrt{x+1}}\)
P =( \(\dfrac{1}{x-\sqrt{x}}\)+ \(\dfrac{1}{\sqrt{x}-1}\)) - \(\dfrac{\sqrt{x+1}}{x-2\sqrt{x}+1}\)( với x>0 và x khác 1 )
a) Rút gọn biểu thức P
b) Tính giá trị của x để x = 4
c) Tìm giá trị của x để P= -2
a: \(P=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)