Những câu hỏi liên quan
LL
Xem chi tiết
LY
Xem chi tiết
QA
Xem chi tiết
NL
4 tháng 2 2021 lúc 23:42

\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)

\(A=sin^2x+cos^2x=1\)

\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)

\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)

\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)

\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)

\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)

Bình luận (0)
VM
Xem chi tiết
TV
Xem chi tiết
NT
10 tháng 4 2021 lúc 22:31

\(A=\dfrac{sin^2x-cos^2x.\left(1-cos^2x\right)}{cos^2x-sin^2x.\left(1-sin^2x\right)}=\dfrac{sin^2x-cos^2x.sin^2x}{cos^2x-sin^2x.cos^2x}\\ =\dfrac{sin^2x.\left(1-cos^2x\right)}{cos^2x.\left(1-sin^2x\right)}=\dfrac{sin^2x.sin^2x}{cos^2x.cos^2x}=\dfrac{sin^4x}{cos^4x}.\)

Bình luận (0)
NV
Xem chi tiết
HP
11 tháng 4 2021 lúc 22:40

\(\dfrac{sin^2x-cos^2x+cos^4x}{cos^2x-sin^2x+sin^4x}=\dfrac{1-2cos^2x+cos^4x}{1-2sin^2x+sin^4x}==\dfrac{\left(cos^2x-1\right)^2}{\left(sin^2-1\right)^2}=\dfrac{sin^4x}{cos^4x}=tan^4x\)

 

Bình luận (0)
DH
Xem chi tiết
DH
Xem chi tiết
PN
Xem chi tiết
NL
1 tháng 5 2021 lúc 21:29

\(A=\dfrac{4sin^4x-cos^2x\left(1-cos^2x\right)+sin^2x.cos^2x-2cos^2x}{sin^2x}+\dfrac{2}{tan^2x}\)

\(=\dfrac{4sin^4x-sin^2x.cos^2x+sin^2x.cos^2x-2cos^2x}{sin^2x}+2cot^2x\)

\(=4sin^2x-2cot^2x+2cot^2x=4sin^2x\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=2\end{matrix}\right.\)

Bình luận (0)