S=1+2+2^2+2^3+2^4+...+2^100
S=1.2+2.3+3.4+4.5+...+99.100+100.101
Q=1^2+2^2+3^2+...+100^2+101^2
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^{^2}}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.......\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1.2.3.....100}{1.2.3....100}.\frac{1.2.3....100}{2.3.4...101}\)
\(=1.\frac{1}{101}=\frac{1}{101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1.2.3...99.100}{2.3.4...100.101}\)
\(=\frac{1}{101}\)
Bài 5 :
a) Chứng minh rằng : 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/199.200/ 1/101 + 1/102 + 1/103 + ... + 1/200 = 1
b) So sánh A = 1 mũ 2/1.2 x 2 mũ 2/2.3 x 3 mũ 2/3.4 x 99 mũ 2/99.100 x 100 mũ 2/100.101 và B = 2 mũ 2/1.3 x 3 mũ 2/2.4 x 4 mũ 2/3.5
x .... x 59 mũ 2/58.60
Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
Tính:
a) \(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
b)\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{59^2}{58.60}\)
a,1^2/1.2 . 2^2/2.3 . 3^2/3.4 ... 99^2/99.100 . 100^2/100.101
= 1/2 . 2/3 . 3/4 ... 99/100 . 100/101
=( 2.3.4....100/2.3.4...100) . 1/101
= 1 . 1/101
=1/101
ý b tương tự nhé !
Bạn kia đéo biết thì thôi xen vào làm gì?
Tính
a, 1.2+2.3+3.4+4.5+5.6+.........+99.100
b, \(1^2+2^2+3^2++.......+100^2\)
1.Tính
A= (1-1/22).(1-1/32)...(1-1/1002)
B= -1/1.2-1/2.3-1/3.4-...-1/100.101
C= 1.2+2.3+3.4+...+100.101
Lời giải :
Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101
3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3
=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)
=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102
=100.101.102
S=100.101.34=343400
1.Tính
a) Ta có:
A=(1-1/22).(1-1/32)...(1-1/1002)
=>A=3/22.8/32.....9999/1002
=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)
=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)
=>A=1/100.101/2
=>A=101/200
b) Ta có:
B=-1/1.2-1/2.3-1/3.4-...-1/100.101
=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)
=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)
=>B=-(1-1/101)
=>B=-100/101
c) Ta có:
C=1.2+2.3+3.4+...+100.101
=>3C=1.2.3+2.3.3+3.4.3+...+100.101.3
=>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
=>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102
=>3C=100.101.102
=>3C=1030200
=>C=343400
Chúc bạn hok tốt nhé >:)!!!!!
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{100^2}{100.101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}...\frac{100.100}{100.101}\)
\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4...100.101}\)
\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3....100\right).\left(2.3.4...101\right)}\)
\(=\frac{1.1}{1.101}\)
\(=\frac{1}{101}\)
\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}.....\frac{100^2}{100\cdot101}\)
\(=\frac{1.1}{1\cdot2}\cdot\frac{2.2}{2.3}\cdot\frac{3.3}{3.4}.....\frac{100.100}{100.101}\)
\(=\frac{\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot100\right)\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot101\right)}\)
\(=\frac{1}{101}\)
(de bai)=\(\frac{1^2.2^2.3^2...100^2}{1.2.2.3.3.4...100.101}\)
=\(\frac{1.1.2.2.3.3.4...100.100}{1.2.2.3.3.4...100.101}\)=\(\frac{1}{101}\)
a)\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(\frac{1.1}{1.2}.\frac{2.2}{2.3}\frac{3.3}{3.4}...\frac{100.100}{100.101}\)
\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3...100\right).\left(2.3...101\right)}\)
\(=\frac{1}{1.101}\)
\(=\frac{1}{101}\)
k cho mk nha
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
Tính
\(\frac{1^2}{1.2}+\frac{2^2}{2.3}+\frac{3^2}{3.4}...\frac{100^2}{100.101}\)