Những câu hỏi liên quan
TM
Xem chi tiết
TL
17 tháng 4 2023 lúc 21:39

Nối B vs I. Xét tam giác BID vuông tại D, có:

    BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:

    DC2 = IC2 - ID2 (2).Từ (1) và (2) =>

=> BD2 - DC2

   = BI2 - ID2 - IC2 + ID2

   = BI2 - IC2

   = BI2 - AI2 (vì AM=CM)

   = AB2=> AB2 = BD2 - DC2 (đpcm)

Bình luận (1)
NT
17 tháng 4 2023 lúc 22:33

a: \(BD^2-CD^2\)

\(=BI^2-ID^2-CI^2+ID^2=BI^2-CI^2=BI^2-AI^2=BA^2\)

b: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)

sin B=AC/BC=4/5

=>góc B=53 độ

=>góc C=37 độ

Bình luận (0)
TN
Xem chi tiết
NM
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Bình luận (3)
HH
Xem chi tiết
HA
Xem chi tiết
NT
8 tháng 2 2021 lúc 19:30

1) Ta có: \(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=100\)

Do đó: \(BC^2=AB^2+AC^2\)(=100)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

2) Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

Bình luận (1)
LL
8 tháng 2 2021 lúc 20:05

Ta có: BC2=102=100

AB2+AC2=62+82=100

Vậy BC2=AB2+AC2

Xét ΔABC có:

 BC2=AB2+AC2

Nên ΔABC vuông tại A(Định lí Pytago đảo)

Ta có: ΔABC vuông tại A(gt)

Nên 

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 2 2022 lúc 15:42

Ta có:

\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)

\(BC^2=10^2=100\left(cm\right)\)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)

Bình luận (0)
PT
16 tháng 2 2022 lúc 15:44

Áp dụng định lý Pytago đảo  ta có:

AB2+AC2=82+62=100

mà 102=100

⇒82+62=102hay AB2+AC2=BC2

vậy ABC là tam giác vuông tại A

Bình luận (0)
CS
16 tháng 2 2022 lúc 15:53

áp dụng định lý pitago ta có : 

ab^2+ac^2=8^2+6^2=100=10^2

=>bc=10cm 

=>tam giác abc vuông tại a

 

 

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 1 2018 lúc 5:35

b. Vì AB < AC < BC ⇒ ∠C < ∠B < ∠A (quan hệ giữa góc và cạnh đối diện trong tam giác)

Bình luận (0)
MT
Xem chi tiết
MH
10 tháng 2 2022 lúc 5:18

a) Ta có:

\(BC^2=AB^2+AC^2\)

\(10^2=6^2+8^2=36+64=100\)

Áp dụng định lí Pytago đảo 

⇒ Tam giác ABC vuông tại A

b) 1/ Xét tam giác ABD và tam giác EBD có

^A=^E=90o(gt)

BD: cạnh chung

^B1=^B2(BD phân giác ^B)

⇒ Tam giác ABD= tam giác EBD

2/ Em xem lại đề ha

Bình luận (0)
KK
Xem chi tiết
PL
Xem chi tiết