Những câu hỏi liên quan
NM
Xem chi tiết
H24
23 tháng 6 2017 lúc 22:43

a

011015... xy...
b123 (&)456...99100  
c13 (*)6 (^)101521...xy  

nhận xét: 

+ tổng 2 ô liên tiếp ở hàng c bằng bình phương ô phía trên ô thứ hai trong 2 ô  (ở hàng b)

      VD: (*) + (^) = (&)

   nói vậy hiểu ko??

=> x+ y = 100 ^2 =10 000   (1)

+ Sự liên quan giữa các hàng (đây cũng là căn cứ khi tớ đưa ra cái bảng ở trên, mấy ô bỏ trống là mấy thứ ko cần quan tâm):

a+b=c  <=>  a-c=b  (+)

áp dụng (+) vào cột có a=x, b=100, c=y ta được: (viết vầy có xác định được là cột nào ko???)

x-y = 100   (2) 

Cộng 2 vế  (1) và (2), ta có: 

2x=10 100 <=> x= 5050 hay số hạng thứ 100 là 5050 

Câu b thì tớ ko biết

Bình luận (0)
DT
23 tháng 6 2017 lúc 13:12

là số thứ 100 là 1000

Bình luận (0)
H24
24 tháng 6 2017 lúc 15:50

Nguyễn Mai: bạn k chi ậ? tớ chỉ đăng câu trả lời này để bác bỏ câu trả lời của bạn kia thôi. cũng để tìm số hạng thứ 100

đáng lẽ nên lấy hàng a làm căn cứ (vì khi đề yêu cầu chứng minh thì điều đó luôn luông đúng), nhưng tớ ko chứng minh được nên chỉ dám lấy bừa hàng c thôi. sorry bạn nha...

Bình luận (0)
QV
Xem chi tiết
NL
10 tháng 7 2021 lúc 20:12

Hai số hạng liên tiếp của dãy có dạng:

\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)

Tổng của 2 số hạng liên tiếp:

\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)

Bình luận (0)
GN
Xem chi tiết
NL
Xem chi tiết
IM
23 tháng 7 2016 lúc 9:52

Nhận xét các số hạng trong dãy có dạng

\(\frac{n\left(n+1\right)}{2}\)

=>Tổng 2 số hạng liên tiếp của dãy là

\(\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\frac{\left(n+1\right)2\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\) là số chính phương

=>đpcm

Bình luận (0)
NT
24 tháng 6 2017 lúc 7:52

Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\dfrac{\left(n-1\right).n}{2}\) và \(\dfrac{n.\left(n+1\right)}{2}\)

=> \(\dfrac{\left(n-1\right).n}{2}\)+ \(\dfrac{n.\left(n+1\right)}{2}\)=\(\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2\)

Vậy tổng của hai số hạng liên tiếp bao giờ cũng là số chính phương

Bình luận (0)
NM
22 tháng 6 2019 lúc 10:23

Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html

Bình luận (0)
NN
Xem chi tiết
HH
Xem chi tiết
BB
5 tháng 10 2017 lúc 11:05

Xét tổng 2 số hạng liên tiếp của dãy:

(n-1)n/2+n(n+1)/2=(n^2-n+n^2+n)/2=(2n^2)/2=n^2 là số chính phương(n thuộc N)

Bình luận (0)
HH
6 tháng 10 2017 lúc 9:19

bạn thử chọn số khác đi như \(\frac{n\left(n+2\right)}{2}\)nó đâu có ra

Bình luận (0)
VC
Xem chi tiết
GD

a, Khoảng cách 2 số hạng liên tiếp: 4 - 2 = 6 - 4 = 8 - 6 = 10 - 8 = 12 - 10 = 2

Số hạng thứ 2014 là: (2014 - 1 ) x 2 + 2 = 2013 x 2 + 2 = 4028

b, Hai số hạng liên tiếp có hiệu là 1 đơn vị

Số bé là: (2015 - 1):2= 1007

Số lớn là: 1007 +1 =1008

Đ.số:......

Bình luận (0)
H24
7 tháng 1 2024 lúc 10:00

Khoảng cách giữa 2 số hạng liên tiếp cách nhau:

\(4-2=2\)(đơn vị)

Vậy số hạng thứ 2014 cần tìm là:

\(\left(2014-1\right)\times2+2=4028\)

Đáp số: 4028

\(-------------\)

2 số tự nhiên liên tiếp cần tìm có tổng bằng 2015 là: \(1007\left(và\right)1008\)

Bình luận (0)
TH
Xem chi tiết
LD
7 tháng 5 2016 lúc 20:21

 bài 1 số thứ 25 của dãy là: (25-1) x 3 + 2 = 74 

Bình luận (0)
DH
7 tháng 5 2016 lúc 20:20

a,Bài 1:

Ta có 

ST1: 2 = 3.0+2

ST2: 5 = 3.1+2

St3: 8 = 3.2+2

....

=> STn = 3.(n-1) +2

=> ST25 = 3. (25-1) +  2 = 3.24 + 2 = 74

b, Theo phần a có các số trong dãy là các số chia 3 dư 2

Mà: 72 chia hết cho 3 => 72 ko thuộc dãy

  56 chia 3 dư 2 

=> 56 là số thứ: (56 - 2) : 3 +1 = 19 của dãy

k mih đi chứ

Bình luận (0)
LD
7 tháng 5 2016 lúc 20:23

b, Theo phần a có các số trong dãy là các số chia 3 dư 2

Mà: 72 chia hết cho 3

=> 72 ko thuộc dãy 56 chia 3 dư 2

=> 56 là số thứ: (56 - 2) : 3 +1 = 19 của dãy

Bình luận (0)
TD
Xem chi tiết
NN
26 tháng 8 2017 lúc 15:47

1)55=4+5+6+7+8+9+10+11

Bình luận (0)
HT
26 tháng 8 2017 lúc 17:12

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

Bình luận (0)