Ôn tập toán 8

NL

Bài 1 : Cho dãy số 1,3,6,10,15,...., n*(n+1)/2 , ....

Chứng minh rằng tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương 

 

IM
23 tháng 7 2016 lúc 9:52

Nhận xét các số hạng trong dãy có dạng

\(\frac{n\left(n+1\right)}{2}\)

=>Tổng 2 số hạng liên tiếp của dãy là

\(\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\frac{\left(n+1\right)2\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\) là số chính phương

=>đpcm

Bình luận (0)
NT
24 tháng 6 2017 lúc 7:52

Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\dfrac{\left(n-1\right).n}{2}\) và \(\dfrac{n.\left(n+1\right)}{2}\)

=> \(\dfrac{\left(n-1\right).n}{2}\)+ \(\dfrac{n.\left(n+1\right)}{2}\)=\(\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2\)

Vậy tổng của hai số hạng liên tiếp bao giờ cũng là số chính phương

Bình luận (0)
NM
22 tháng 6 2019 lúc 10:23

Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
VT
Xem chi tiết
NA
Xem chi tiết
NL
Xem chi tiết
TL
Xem chi tiết
HB
Xem chi tiết
HB
Xem chi tiết
LT
Xem chi tiết
NP
Xem chi tiết