tim gtnn cua bieu thuc
C=5x2+y2+10+4xy-14x-6y
tim gtnn cua bieu thuc
A= 5x^2+y^2 -4xy-2y+2023
\(=5\left(x^2-\dfrac{4}{5}xy+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}y^2-2y+2023\)
\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y^2-10y+25\right)+2018\)
\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2018>=2018\)
Dấu = xảy ra khi y=5 và x=2/5y=2
Tìm GTNN của biểu thức sau:
E=5x2+y2+10+4xy-14x-6y
\(E=5x^2+y^2+10+4xy-14x-6y\)
\(E=\left(2x+y-3\right)^2+\left(x-1\right)^2+6\)
Vì \(\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\)
Dấu '=" xảy ra.......................
4x2+5y2-4xy-16y+22
Tim GTNN cua bieu thuc
4x2+5y2-4xy-16y+22
=4x2-4xy+y2+4y2-16xy+16+6
=(2x+y)2+(2x-4)2+6
Vì (2x+y)2;(2x-4)2\(\ge\)0 nên (2x+y)2+(2x-4)2+6\(\ge\)6
Dấu "=" xảy ra khi 2x-4=0 và 2x+y=0
<=> x=2 và 2.2+y=0
<=>x=2 và y=-4
Vậy GTNN của biểu thức là 6 tại x=2;y=-4
Tìm GTNN của biểu thức sau:
E=5x2+y2+10+4xy-14x-6y
\(E=5x^2+y^2+10+4xy-14x-6y\)
\(=\left(4x^2+y^2+4xy\right)-12x-6y+9+x^2-2y+1\)
\(=\left(2x+y\right)^2-6\left(2x+y\right)+9+\left(x-1\right)^2\)
\(=\left(2x+y-3\right)^2+\left(x-1\right)^2\ge0\)
\(\Rightarrow E_{Min}=0\)
\("="\Leftrightarrow x=y=1\)
Ta có E= \(\left(4x^2+y^2+9-6y-12x+4xy\right)+\left(x^2-2x+1\right)\)
=\(\left(2x+y-3\right)^2+\left(x-1\right)^2\)
Vì \(\left(2x+y-3\right)^2+\left(x-1\right)^2\) >= 0
=>E>=0 =>GTNN của E=0 khi: \(x-1=0\) =>\(x=1\)
\(2x+y-3=0\) =>\(2x+y=3\)
=> \(2+y=3\) => \(y=1\)
tìm GTNN của 5x^2+y^2+110+4xy-14x-6y
Tim GTNN cua bieu thuc
A= \({2x^2+3y^2+4xy-8x-2y+18}\)
2A = 4x^2+6y^2+8xy-16x-4y+36
= [(4x^2+8xy+4y^2)-2.(2x+2y).4+16]+(2y^2+12y+18)+2
= (2x+2y-4)^2+2.(y+3)^2+2 >= 2
=> A >= 1
Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 và y=-3
Vậy GTNN của A = 1 <=> x=5 và y=-3
Tk mk nha
CHo 2 so duong xy co X+Y=1
Tim gtnn cua bieu thuc P=1/x^2+y^2 + 2/xy+4XY
1) Tim GTNN cua bieu thuc sau
a) M = x^2 + 4x + 9
b) N = x^2 - 20x +101
5) Tim GTLN cua bieu thuc sau
a) C = -y^2 + 6y -15
b) B = -x^2 + 9x - 12
c) D = 3x - x^2
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
A= 5x2+y2 -4xy+3x-3
B= x(x-1)(x+1)(x+2)
tìm gtnn
\(A=\left(4x^2-4xy+y^2\right)+\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{21}{4}\\ A=\left(2x-y\right)^2+\left(x+\dfrac{3}{2}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\\ A_{min}=-\dfrac{21}{4}\Leftrightarrow\left\{{}\begin{matrix}2x=y\\x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-3\end{matrix}\right.\)
\(B=\left[\left(x-1\right)\left(x+2\right)\right]\left[x\left(x+1\right)\right]=\left(x^2+x-2\right)\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)\\ B=\left(x^2+x\right)^2-2\left(x^2+x\right)+1-1=\left(x^2+x-1\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow x^2+x-1=0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{5}{4}=0\\ \Leftrightarrow\left(x+\dfrac{1-\sqrt{5}}{2}\right)\left(x+\dfrac{1+\sqrt{5}}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)