Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
AN
Xem chi tiết
TD
1 tháng 9 2015 lúc 9:02

 Giả sử a+b+c chia hết cho 6
Ta có: a3 + b3 + c3 = (a+b+c)3- 3 (a+b)(b+c)(c+a) 
Ta chứng minh được (a+b)(b+c)(c+a) luôn chia hết cho 2
Thực vậy: Nếu trong tích (a+b)(b+c)(c+a) có ít nhất một thừa số chia hết cho 2 thì tích đó chia hết cho 2
Nếu cả ba thừa số đều không chia hết cho 2. ta có: a+b = 2k + 1; b+c = 2q+1
=> 2b + a+c = 2k +2q= 2k+ +2 = 2(k+q+1) = 2l.=> a+c chia hết cho 2. Khi đó tích sẻ chia hết cho 2. )
Vì (a+b)(b+c)(c+a) luôn chia hết cho 2 nên:
3(a+b)(b+c)(c+a) luôn chia hết cho 6
Mà (a+b+c)3 cũng chia hết cho 6 (vì a+b+c chia hết cho 6 )
Do đó (a+b+c)3- 3 (a+b)(b+c)(c+a) chia hết cho 6 
Hay: a3 + b3 + c3 chia hết cho 6 

Bình luận (0)
NT
26 tháng 5 2017 lúc 20:59
người ta yêu cầu chứng minh thì bạn lại giả sử là sao?
Bình luận (0)
NA
Xem chi tiết
NQ
10 tháng 11 2017 lúc 13:14

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

Bình luận (0)
H24
10 tháng 11 2017 lúc 13:09

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

Bình luận (0)
PD
10 tháng 11 2017 lúc 13:13

a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

b, với m lẻ từ hằng đẳng thức đáng nhớ ta có 
a^m+b^m=(a+b) {a^(m-1)-[a^(m-2)]b+...-a.[b^(m-2)]+b^(m... chia hết cho a+b 
 

Bình luận (0)
TA
Xem chi tiết
ND
16 tháng 5 2016 lúc 18:24

xét hiệu a^3+ b^3 -(a+b)=a^3+b^3-a-b= a^3-a+(b^3-b)

=a(a^2-1)+b(b^2-1)=a(a^2+1^2)+b(b^2+1^2)

=a(a+1)(a-1)+b(b+1)(b-1)

vì a, a-1, a+1 là 3 số tự nhiên liên tiếp nên chia hết cho 2, 3 mà 2,3 nguyên tố cùng nhau nên a(a-1)(a+10 chia hết cho6

tương tự b(B-1)b+1)chia hết cho 6

=>a^3+b^3-(a+b) chia hết cho 6

mà a^3 + b^3 chia hết cho 6 nên a+b chia hết cho 6 ( đpcm )

Bình luận (0)
NM
Xem chi tiết
PQ
30 tháng 4 2023 lúc 15:13

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

Bình luận (0)
ND
Xem chi tiết
MH
22 tháng 9 2023 lúc 22:56

\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có: Với 3 số a,b,c ít nhất có 1 cặp a,b,c cùng chẵn hoặc cùng lẻ

=> \(\left[{}\begin{matrix}a+b⋮2\\b+c⋮2\\c+a⋮2\end{matrix}\right.\)=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮6\)

=> \(a^3+b^3+c^3⋮6\)

Bình luận (1)
BN
Xem chi tiết
OO
Xem chi tiết
VA
Xem chi tiết
NT
7 tháng 10 2015 lúc 9:03

Chứng minh rằng:
a) 3 + 32 +.....+ 31998 

 = (3 + 32)+(33+34) +(35+36) .....+ (31997+31998 )

            có 1998: 2 = 999 nhóm 

= (3 + 32) + 32.(3 + 32) +34.(3 + 32) .....+ 31996(3 + 32)

= 12 + 32.12 +34.12 +....+ 31996.12

= 12( 1+32+34+.......+31996)  chia hết cho 12
b) 3 + 3+....+ 31998 

= (3 + 3+33) + (34 + 3+36) + .. + (31996 + 31997 +31998)  có 1998 : 3 = 666 nhóm

= (3 + 3+33) + 33.(3 + 3+33)+ ...+31995.(3 + 3+33)

= 39 +33.39 + .....+31995.39

= 39(1+33+....+31995) chia hết cho 39

c) 3 + 3+.....+ 3100 chia hết cho 120

nhóm mỗi nhóm 4 số hạng tương tự như hai câu trên ta được thừa số chung là 120

Bình luận (0)
DN
Xem chi tiết
H24
9 tháng 8 2017 lúc 9:07

3. \(1998=a_1+a_2+a_3\) với \(a,b,c\in N\)

Xét hiệu \(\left(a_1^3+a_2^3+a_3^3\right)-\left(a_1+a_2+a_3\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+a_3\left(a_3^2-1\right)\)

\(=\left(a_1-1\right).a_1.\left(a_1+1\right)+\left(a_2-1\right).a_2.\left(a_2+1\right)+\left(a_3-1\right).a_3.\left(a_3+1\right)\)

Dễ thấy mỗi số hạng là tích 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3

=> Mỗi số hạng chia hết cho 6

=> Hiệu \(\left[\left(a_1^3+a_2^3+a_3^3\right)-\left(a_1+a_2+a_3\right)\right]⋮6\)

Hay \(\left(a_1^3+a_2^3+a_3^3\right)\)\(\left(a_1+a_2+a_3\right)\) có cùng số dư khi chia cho 6

=> \(\left(a_1^3+a_2^3+a_3^3\right)\) và 1998 có cùng số dư khi chia cho 6

Nên \(\left(a_1^3+a_2^3+a_3^3\right)⋮6\)

Bình luận (0)
NS
10 tháng 12 2020 lúc 23:19

uuuuuuuuuuuuuuuuuuuuuuuuu

Bình luận (0)