Violympic toán 9

ND

Chứng minh rằng a+b+c chia hết cho 6 thì a^3+b^3+c^3 chia hết cho 6

MH
22 tháng 9 2023 lúc 22:56

\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có: Với 3 số a,b,c ít nhất có 1 cặp a,b,c cùng chẵn hoặc cùng lẻ

=> \(\left[{}\begin{matrix}a+b⋮2\\b+c⋮2\\c+a⋮2\end{matrix}\right.\)=> \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮6\)

=> \(a^3+b^3+c^3⋮6\)

Bình luận (1)