Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
YA
Xem chi tiết
NT
10 tháng 7 2023 lúc 19:33

f: x+y+z=3

=>x^2+y^2+z^2+2(xy+xz+yz)=9

=>2(xy+yz+xz)=6

=>xy+yz+xz=3

mà x+y+z=3

nên x=y=z=1

e: x^2+y^2+2=2(x+y)

=>(x+y)^2-2xy+2-2(x+y)=0

=>(x+y)(x+y-2)-2(xy-1)=0

=>x=y=1

Bình luận (0)
TS
Xem chi tiết
NL
Xem chi tiết
HN
24 tháng 5 2016 lúc 13:07

Từ x+y+z=1 => 1-x = y+z

Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\), ta có :  \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-z\right)\left(1-y\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2.\left(1-y\right)\)

\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)

\(\Rightarrow1+y=x+2y+z\ge4\left(1-x\right)\left(1-y\right)\left(1-z\right)\)(ĐPCM)

Bình luận (0)
HH
Xem chi tiết
NA
Xem chi tiết
VH
Xem chi tiết
HP
10 tháng 2 2017 lúc 20:51

-có lẽ là x3+y3=x-y-

Vì x,y>0=>x3+y3>0=>x-y>0

Có x2+y2<1<=>(x-y)(x2+y2)<x-y<=>(x-y)(x2+y2)<x3+y3

<=>x3+xy2-x2y-y3<x3+y3<=>x3+y3-x3-xy2+x2y+y3>0

<=>2y3-xy2+x2y>0<=>y(2y2-xy+x2)>0

<=>y[7y2/4+(y/2 - x)2] > 0 (luôn đúng do x,y>0)

Bình luận (0)
Xem chi tiết
NT
27 tháng 10 2021 lúc 20:56

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Leftrightarrow x=y=z\)

Bình luận (0)
LH
Xem chi tiết
VM
24 tháng 10 2019 lúc 15:04

x2+y2+z2=1 => x;y;z \(\le1\)(1)

1= (x+y+z)2= x2+y2+z2+ 2(xy+yz+zx) = 1+ 2(xy+yz+zx) => xy+yz+zx=0 => xy= z(-y-x) = z(z-1)

x3+y3 =1 <=> (x+y)(x2+y2 -xy)=1 <=> (1-z)(1-z2-z(z-1))=1 <=> (z-1)(2z2-z-1)= 2z3 -3z2 =0 <=> z=0 hoặc z= \(\frac{3}{2}\)(loại vì lớn hơn 1)

 z=0 => x+y=1; xy= 0;

y=y(x+y) = xy+ y2 = y2

=> x+y2 +z3 = x+ y+ 0 = 1 (điều phải chứng minh)

Bình luận (0)
 Khách vãng lai đã xóa
MV
Xem chi tiết
PT
8 tháng 12 2017 lúc 19:25

Ta có: \(x>y>0\)

\(\Rightarrow x^5-y^5< x^5+y^5\)

\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)

\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1\)               \(\left(1\right)\)

Lại có: \(x>y>0\)

\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)               \(\left(2\right)\)

Từ (1) và (2) suy ra \(x^4+y^4< 1\)

Vậy \(x^4+y^4< 1\)

Bình luận (0)
H24
9 tháng 12 2017 lúc 13:05

Ta có:  \(x>y>0\)

\(\Rightarrow x^5-y^5< x^5+y^5\)

\(\Leftrightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)< x-y\)

\(\Leftrightarrow x^4+x^3y+x^2y^2+xy^3+y^4< 1^{\left(1\right)}\)

Lại có: \(x>y>0\)

\(\Rightarrow x^4+y^4< x^4+x^3y+x^2y^2+xy^3+y^4\)(2)

Từ (1) và (2) suy ra : \(x^4+y^4< 1\)

Vậy \(x^4+y^4< 1\)(đpcm)

Bình luận (0)
TL
Xem chi tiết