Cho \(x^3+y^3+z^3=3xyz\) và \(a\ne b\ne c\)
C/M: \(a+b+c=0\)
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Em(mình) thử nhé, ko chắc đâu
3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)
\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc
Suy ra \(P=\frac{-abc}{abc}=-1\)
Vậy..
a ) Cho b2 = ac , c2 = bd . Chứng minh :
\(\frac{a^3+b^3+c^3}{b^3+c^2-d^3}=\left(\frac{a+b+c}{b+c-d}\right)^3\) với b ,c , d \(\ne\) 0 , b + c \(\ne\) 0 , b3 + c3 \(\ne\) d3
b ) Cho x , y , z \(\in\) Z . Chứng minh : ||x+y|+z|+(x-y-z) chia hết cho 2
1. cho 1/a +1/b+1/c=0.Ch/m 1/a^3+1/b^3+1/c^3=3/abc
2. Phân tích đa thức sau thành nhân tử:
a) x^3+y^3+z^3-3xyz
b) x^3-y^3+z^3+3xyz
c) x^3-y^3-z^3-3xyz
Bài 2:
a, \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right)z-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
2a ) Ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
Bài 1: CMR:
a) \(\dfrac{\left(a-b\right)^3}{\left(c-d\right)^3}=\dfrac{3a^3+2b^3}{3c^3+2d^3}\)
b)\(\dfrac{a^{10}+b^{10}}{\left(a+b\right)^{10}}=\dfrac{c^{10}+d^{10}}{\left(c+d\right)^{10}}\)
c)\(\dfrac{a^{2017}}{b^{2017}}=\dfrac{\left(a-c\right)^{2017}}{\left(b-d\right)^{2017}}\)
Bài 2: a) Cho: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\) và a,b,c\(\ne\)0;a+b+c\(\ne\)0
So sánh a,b,c
b) Cho \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và x,y,z\(\ne\)0;x+y+z\(\ne\)0
Tính: \(\dfrac{x^{333}.y^{666}}{z^{999}}\)
c) Cho \(ac=b^2;ab=c^2\left(a+b+c\ne0\right)\)
Tính \(\dfrac{b^{333}}{c^{111}.a^{222}}\)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
Bài 1 chưa nhìn kĩ lắm nhưng thấy câu c tự dưng thọt vào cái chứng minh ngay hai cái đó bằng nhau luôn à ? c và d thỏa mãn điều kiện gì ?
Chắc câu a b cũng thiếu đk nốt nhìn nhói tim quá :v
Bài 1 : Tìm các số nguyên x, y thỏa mãn : \(x^2+y^2+5x^2y^2+60=37xy\)
Bài 2 : Cho 3 số x, y, z đôi một khác nhau, thỏa mãn : \(x^3+y^3+z^3=3xyz\) và xyz ≠ 0.
Tính giá trị biểu thức : \(P=\frac{16\left(x+y\right)}{z}+\frac{3\left(y+z\right)}{x}-\frac{2019\left(x+z\right)}{y}\)
Bài 2:
\(x^3+y^3+z^3-3xyz=0\)
<=> \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
<=> \(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{matrix}\right.\)
Ta có \(a^2+b^2+c^2\ge ab+bc+ca\)
Áp dụng => \(x^2+y^2+z^2\ge xy+yz+zx\)
Dấu "=" xảy ra <=> x = y = z (vô lí do x,y,z đôi 1 khác nhau)
=> x + y + z =0
=> \(\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\z+x=-y\end{matrix}\right.\)
Thay vào P = -16 - 3 + 2019 = 2000
Bài 1:
Ta có: \(x^2+y^2+5x^2y^2+60=37xy\)
\(\Leftrightarrow x^2+y^2-2xy+60=35xy-5x^2y^2\)
\(\Leftrightarrow\left(x-y\right)^2+60=5\left(7xy-x^2y^2\right)\)
\(\Leftrightarrow\left(x-y\right)^2+60=\frac{5\cdot49}{4}-\frac{5}{4}\left(2xy-7\right)^2\)
\(\Leftrightarrow\left[2\left(x-y\right)\right]^2+5\left(2xy-7\right)^2=5\cdot49-60\cdot4=5\)
mà \(x,y\in Z\) và \(2xy-7\ne0\); \(5\left(2xy-7\right)^2\ge5\)
nên \(\left[2\left(x-y\right)\right]^2=0\)
\(\Leftrightarrow x=y\)
|(2xy-7)|=1
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-7=-1\\2x^2-7=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2=6\\2x^2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=3\left(loại\right)\\x^2=4\end{matrix}\right.\)
\(\Leftrightarrow x=\pm2\)
Vậy: (x,y)=(\(\pm2;\pm2\))
1 a) Cho a,b,c là độ dài 3 cạnh của một tam giác .C/m
a^3b+ab^3-abc^2+2a^2b^2>0(1)
b) cho x+y+z=0.(1).C/m x^4+y^4+z^4= 2(x^2y^2+y^2z^2+z^2x^2)
2 a) cho x+y+z=0.C/tỏ x^3+y^3+z^3=3xyz
b) phân tích đa thức thành nhân tử
(a-b)^3+(b-c)^3+(c-a)^3
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
a) Biết \(a^2+ab+\frac{b^3}{3}=25;c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16\)
và a\(\ne\)0;c\(\ne\)0;a\(\ne\)-c. Chứng minh rằng: \(\frac{2c}{a}=\frac{b+c}{a+c}\)
b) Tìm x,y,z biết:
b1)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)
và \(2x-3y+z=6\)
b2) \(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\)
và \(10x-3y-2x=-4\)
Câu 1: Cho x, y, z là các số ≠ 0 và x+\(\dfrac{1}{y}\) =y+\(\dfrac{1}{z}\) =z+\(\dfrac{1}{x}\) . Chứng minh rằng
Hoặc x=y=z, hoặc x2y2z2=1.
Câu 2: Cho abc ≠ 0 và a+b+c ≠ 0. Tìm x, biết: \(\dfrac{a+b-x}{c}\) +\(\dfrac{a+c-x}{b}\) +\(\dfrac{b+c-x}{a}\) +\(\dfrac{4x}{a+b+c}\) =1