15: (x +3) =3
G=3/(3 x 6 x 9) + 3/(6 x 9 x 12) + 3/(9 x 12 x 15) + 3/(12 x 15 x 18)
\(\frac{3}{3.6.9}+\frac{3}{6.9.12}+\frac{3}{9.12.15}+\frac{3}{12.15.18}=\frac{3}{6}\left(\frac{6}{3.6.9}+\frac{6}{6.9.12}+\frac{6}{9.12.15}+\frac{6}{12.15.18}\right)\)
= \(\frac{1}{2}\left(\frac{1}{3.6}-\frac{1}{6.9}+\frac{1}{6.9}-\frac{1}{9.12}+\frac{1}{9.12}-\frac{1}{12.15}+\frac{1}{12.15}-\frac{1}{15.18}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3.6}-\frac{1}{15.18}\right)=\frac{1}{2}.\frac{14}{270}=\frac{7}{270}\)
\(\dfrac{x}{15}=\dfrac{3}{5}-\dfrac{-2}{3}\) ok
\(\Rightarrow\dfrac{x}{15}=\dfrac{9}{15}+\dfrac{10}{15}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{19}{15}\)
\(\Rightarrow x=19\)
1. Tìm số tự nhiên x biết 1) 3^x . 3=243 2) 7.2^x=56 3) x^3=8 4)x^20=x 5) 2^x-15=17 6) (2x+1)^3=9.81 7) x^6:x^3=115 8) ( 2x-15)^5=(2x-15)^3 9) 3^x+2-5.3^x=36 10) 7.4^x-1+4^x+1=23 Giúp tớ bài này với
1: =>3^x=81
=>x=4
2: =>2^x=8
=>x=3
3: =>x^3=2^3
=>x=2
4: =>x^20-x=0
=>x(x^19-1)=0
=>x=0 hoặc x=1
5: =>2^x=32
=>x=5
6: =>(2x+1)^3=9^3
=>2x+1=9
=>2x=8
=>x=4
7: =>x^3=115
=>\(x=\sqrt[3]{115}\)
8: =>(2x-15)^5-(2x-15)^3=0
=>(2x-15)^3*[(2x-15)^2-1]=0
=>2x-15=0 hoặc (2x-15)^2-1=0
=>2x-15=0 hoặc 2x-15=1 hoặc 2x-15=-1
=>x=15/2 hoặc x=8 hoặc x=7
1. Tìm số tự nhiên x biết:
1) \(3^x.3=243\)
\(3^x=243:3\)
\(3^x=81\)
\(3^x=3^4\)
\(\Rightarrow x=4\)
_____
2) \(7.2^x=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
\(\Rightarrow x=3\)
_____
3) \(x^3=8\)
\(x^3=2^3\)
\(\Rightarrow x=3\)
_____
4) \(x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x=1\)
5) \(2^x-15=17\)
\(2^x=17+15\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
_____
6) \(\left(2x+1\right)^3=9.81\)
\(\left(2x+1\right)^3=729=9^3\)
\(\rightarrow2x+1=9\)
\(2x=9-1\)
\(2x=8\)
\(x=8:2\)
\(\Rightarrow x=4\)
_____
7) \(x^6:x^3=125\)
\(x^3=125\)
\(x^3=5^3\)
\(\Rightarrow x=5\)
_____
8) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=7\\x=8\end{matrix}\right.\)
_____
9) \(3^{x+2}-5.3^x=36\)
\(3^x.\left(3^2-5\right)=36\)
\(3^x.\left(9-5\right)=36\)
\(3^x.4=36\)
\(3^x=36:4\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
_____
10) \(7.4^{x-1}+4^{x+1}=23\)
\(\rightarrow7.4^{x-1}+4^{x-1}.4^2=23\)
\(4^{x-1}.\left(7+4^2\right)=23\)
\(4^{x-1}.\left(7+16\right)=23\)
\(4^{x-1}.23=23\)
\(4^{x-1}=23:23\)
\(4^{x-1}=1\)
\(4^{x-1}=4^1\)
\(\rightarrow x-1=0\)
\(x=0+1\)
\(\Rightarrow x=1\)
Chúc bạn học tốt
Tìm x biết :
a) 6 . x - 15 = 15
b) 2 . x + 3 = 9
c) 17- 6 : x = 15
d ) x : 3 + 12 = 14
a) 6 . x - 15 = 15
6 . x = 15 + 15
6 . x = 30
x = 30 : 6
x = 5
b) 2 . x + 3 = 9
2 . x = 9 - 3
2 . x = 6
x = 6 : 2
x = 3
c) 17 - 6 : x = 15
6 : x = 17 - 15
6 : x = 2
x = 6 : 2
x = 3
d) x : 3 + 12 = 14
x : 3 = 14 - 12
x : 3 = 2
x = 2 . 3
x = 6
a) 6 . x -15 = 15
⇒ 6 .x = 15 + (-15)
⇒ 6 .x = 0
⇔ x = 0
Vậy x = 0.
b) 2.x + 3 = 9
⇒2.x = 9 -3
⇒ 2.x = 6
⇔ x = 3
Vậy x = 3.
(15+x):3=3^15:3^12
\(\left(15+x\right):3=3^{15}:3^{12}\)
\(\left(15+x\right)=3^3.3\)
\(15+x=3^4\)
\(x=81-15\)
\(x=66\)
\(\left(15+x\right):3=3^{15}:3^{12}\)
\(\left(15+x\right):3=3^{15-12}\)
\(\left(15+x\right):3=3^3\)
\(15+x=3^3.3\)
\(15+x=81\)
\(x=81-15\)
\(x=66\)
1 / 1 x 3 + 2 / 3 x 7 + 1 / 7 x 9 + 3 / 9 x 15 + 6 / 15 x 27
Đặt A=1 / 1 x 3 + 2 / 3 x 7 + 1 / 7 x 9 + 3 / 9 x 15 + 6 / 15 x 27
2A=2 / 1 x 3 + 4 / 3 x 7 + 2 / 7 x 9 + 6 / 9 x 15 + 12 / 15 x 27
2A=1-1/3+1/3-1/7+1/7-1/9+1/9-1/15+1/15-1/27
2A=1-1/27
2A=26/27
A=13/27
1,tìm x
a,3.(x-5)-4.(x-3)=-12
b,(x-3).(2.y+1)=7
c,20-(x-15)=x-15
d,-(5+x)-120=-15
\(a,3\left(x-5\right)-4\left(x-3\right)=-12\)
\(\Leftrightarrow3x-15-4x+12=-12\)
\(\Leftrightarrow-x=-9\)
\(\Leftrightarrow x=9\)
Vậy x=9
\(c,20-\left(x-15\right)=x-15\)
\(\Leftrightarrow20-x+15=x-15\)
\(\Leftrightarrow2x=50\)
\(\Leftrightarrow x=25\)
Vậy x=25
a) \(\dfrac{-11}{15}< \dfrac{x}{15}< \dfrac{-8}{15}\)
b) \(\dfrac{3}{7}< \dfrac{x}{21}< \dfrac{2}{3}\)
c) \(\dfrac{-67}{21}< \dfrac{x}{168}< \dfrac{-3}{8}\)
a) Ta có: \(\dfrac{-11}{15}< \dfrac{x}{15}< \dfrac{-8}{15}\)
nên -11<x<-8
hay \(x\in\left\{-10;-9\right\}\)
b) Ta có: \(\dfrac{3}{7}< \dfrac{x}{21}< \dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{9}{21}< \dfrac{x}{21}< \dfrac{14}{21}\)
Suy ra: 9<x<14
hay \(x\in\left\{10;11;12;13\right\}\)
c) Ta có: \(\dfrac{-67}{21}< \dfrac{x}{168}< \dfrac{-3}{8}\)
nên \(\dfrac{-536}{168}< \dfrac{x}{168}< \dfrac{-63}{168}\)
Suy ra: -536<x<-63
hay \(x\in\left\{-535;-534;...;-64\right\}\)
3^x*15^y+3^y*15^x = 4050
cho \(x\ge\sqrt{15}\). tìm GTNN của \(F=x^2+x-\sqrt{\left(x^2-15\right)\left(x-3\right)}-\sqrt{x^2-15}-\sqrt{x-3}-38\)
Áp dụng bất đẳng thức AM - GM:
\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).
Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).
Đẳng thức xảy ra khi x = 4.
Vậy...