Tìm ĐKXĐ \(\sqrt{1-3x^2}\)
Tìm ĐKXĐ:
a) \(\dfrac{3}{\sqrt{12x-1}}\)
b) \(\sqrt{\left(3x+2\right)\left(x-1\right)}\)
c) \(\sqrt{3x-2}\) .\(\sqrt{x-1}\)
d) \(\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\)
\(a,\dfrac{3}{\sqrt{12x-1}}\) xác định \(\Leftrightarrow12x-1>0\Leftrightarrow12x>1\Leftrightarrow x>\dfrac{1}{12}\)
\(b,\sqrt{\left(3x+2\right)\left(x-1\right)}\) xác định \(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}3x+2\ge0\\x-1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}3x+2\le0\\x-1\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\)
\(c,\sqrt{3x-2}.\sqrt{x-1}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
\(d,\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xác định \(\Leftrightarrow-x+5>0\Leftrightarrow x< 5\)
tìm ĐKXĐ
1, \(\sqrt{6x+1}\)
2,\(\dfrac{\sqrt{3}-4}{\sqrt{3x-5}}\)
3, \(\sqrt{\dfrac{2\sqrt{15}-\sqrt{59}}{x-7}}\)
4,\(\sqrt{\dfrac{-3x}{1-\sqrt{2}}}\)
5, \(\sqrt{\sqrt{5}-\sqrt{3}x}\)
1.
6x + 1 ≥0
<=>6x≥-1
<=>x≥-1/6
2.
3x - 5 > 0
<=> 3x > 5
<=> x > 5/3
3.
x - 7 > 0
<=> x > 7
4.
-3x ≥0
<=>x≤0
5.
√5 - √3 . x ≥0
<=> √3 . x ≤ √5
<=> x ≤ √5/3 = (√15)/3
Tìm đkxđ của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\) - \(\sqrt[3]{2x-1}\)
1,Tìm đkxđ biểu thức \(\sqrt{3-2x}\)
2,giải phương trình :
a,\(\sqrt{3x-1}\)=2
b,\(\sqrt{x-2}\)+ \(\sqrt{4x-8}\)=6
Bài 1:
ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$
Bài 2:
a. ĐKXĐ: $x\geq \frac{1}{3}$
PT $\Leftrightarrow 3x-1=2^2=4$
$\Leftrightarrow x=\frac{5}{3}$ (tm)
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{x-2}+2\sqrt{x-2}=6$
$\Leftrightarrow 3\sqrt{x-2}=6$
$\Leftrightarrow \sqrt{x-2}=2$
$\Leftrightarrow x-2=4$
$\Leftrightarrow x=6$ (tm)
Tìm ĐKXĐ và rút gọn
1.\(\dfrac{a-5\sqrt{a}+4}{a-1}\)
2.\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\)
a) a ≠ 1; a ≥ 0
\(\dfrac{a-5\sqrt{a}+4}{a-1}=\dfrac{a-\sqrt{a}-4\sqrt{a}+4}{a-1}=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)-4\left(\sqrt{a}-1\right)}{a-1}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}+1}\)
b) a ≥ 0; \(x\ne\pm\sqrt{3}\)
\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}=\dfrac{x+\sqrt{3}}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=\dfrac{1}{x-\sqrt{3}}\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
Ta có: \(\dfrac{a-5\sqrt{a}+4}{a-1}\)
\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\sqrt{a}-4}{\sqrt{a}+1}\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\sqrt{3}\end{matrix}\right.\)
Ta có: \(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\)
\(=\dfrac{x+\sqrt{3}}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
tìm đkxđ \(\sqrt{x^2-3x+7}\)
Đk: \(x^2-3x+7\ge0\)
\(\Leftrightarrow x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}+\dfrac{19}{4}\ge0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge0\) (lđ với mọi x)
Vậy biểu thức luôn xác định với mọi x
\(\sqrt{x^2-3x+7}\)
Có \(x^2-3x+7=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}>0\forall x\)
ĐKXĐ: \(x\in R\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
\(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}-1\)
a, tìm ĐKXĐ và rút gọn biểu thức đã cho
b, Timf điều kiện của x để P<0
a) \(ĐK:x\ge0,x\ne1\)
\(=\dfrac{3x+3\sqrt{x}-3-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2x+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
b) \(P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Kết hợp với đk:
\(\Rightarrow0\le x< 1\)
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
a: ĐKXĐ: \(x\ge1\)
b: ĐKXĐ: \(x< 0\)
c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)
3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)
4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
5) ĐKXĐ:
+) \(-x^2+6x+16\ge0\)
\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)
\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)
\(\Leftrightarrow-2\le x\le8\)
+) \(3x^2\ne0\Leftrightarrow x\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)