Chứng minh \(P\left(x,y\right)=9x^2y^2+y^2-6xy-2y+1\ge0\forall x,y\in R\)
Cmr:\(A=9x^2y^2+y^2-6xy-2y+1\ge0,\forall x,y\in R\)
Hãy chứng min rằng :
1) \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2},\forall a,b,c,d\in R\)
2) \(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\ge2,\forall x,y\in R\)
1) Bất đẳng thức cần chứng minh
\(\Leftrightarrow\) a2 + b2 + c2 + d2 + \(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\) \(ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)
Nếu : ac + bd < 0 : BĐT luôn đúng
Nếu : ac + bd \(\ge\) 0 : Thì (1) tương đương
( ac + bd )2 \(\le\) ( a2 + b2 )( c2 + d2 )
\(\Leftrightarrow\) \(\left(ac\right)^2+\left(bd\right)^2+2abcd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\Leftrightarrow\) \(\left(ad\right)^2+\left(bc\right)^2-2abcd\ge0\)
\(\Leftrightarrow\) \(\left(ad-bc\right)^2\ge0\) , luôn đúng , vậy bài toán được chứng minh
2) Chọn :\(\left\{{}\begin{matrix}a=2\cos x.\cos y\\c=2\sin x.\sin y\\b=d=\sin\left(x-y\right)\end{matrix}\right.\)
Từ câu 1) ta có :
\(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\)
\(\ge\sqrt{\left(2\cos x.\cos y+2\sin x.\sin y\right)^2+\left(2\sin\left(x-y\right)\right)^2}\)
\(\ge\sqrt{4\cos^2\left(x-y\right)+4\sin^2\left(x-y\right)}=2\)
chứng minh rằng
a) 9x2-6x+2>0 \(\forall x \)
b)x2+x+1>0 \(\forall x \)
c) 25x2-20x+7>0 \(\forall x \)
d)9x2-6xy+2y2+1>0 \(\forall x ,y\)
e) x2-xy+y2 \(\ge0\forall x,y\)
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
Cách khác câu e:
\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)
Tính:
a) \(x + 2y + \left( {x - y} \right)\)
b) \(2x - y - \left( {3x - 5y} \right)\)
c) \(3{x^2} - 4{y^2} + 6xy + 7 + \left( { - {x^2} + {y^2} - 8xy + 9x + 1} \right)\)
d) \(4{x^2}y - 2x{y^2} + 8 - \left( {3{x^2}y + 9x{y^2} - 12xy + 6} \right)\)
a) \(x+2y+\left(x-y\right)\)
\(=x+2y+x-y\)
\(=2x+y\)
b) \(2x+y-\left(3x-5y\right)\)
\(=2x+y-3x+5y\)
\(=-x+6y\)
c) \(3x^2-4y^2+6xy+7+\left(-x^2+y^2-8xy+9x+1\right)\)
\(=3x^2-4y^2+6xy+7-x^2+y^2-8xy+9x+1\)
\(=2x^2-3y^2-2xy+9x+8\)
d) \(4x^2y-2xy^2+8-\left(3x^2y+9xy^2-12xy+6\right)\)
\(=4x^2y-2xy^2+8-3x^2y-9xy^2+12xy-6\)
\(=x^2y-11xy^2+2+12xy\)
chứng minh P(x,y)=9x^2y^2+y^2-6xy-2y+1>=0 . please help me the exercise!!!
Bạn xem lại đề bài:
Giải thích:
Nếu x = 1/3 và y = 1
Ta có:
P ( 1/3, 1 ) = (\(9.\left(\frac{1}{3}\right)^2.1^2+1^2-6.1.\frac{1}{3}-2+1=-1< 0\)
bạn giải thích cách làm của bạn giúp tớ được không ???
Nghĩa là đề của bạn bị sai.
Bởi vì nếu thay giá trị x = 1/3 và y = 1 vào sẽ không thỏa mãn.
Cho x, y \(\in R\) thỏa mãn:
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
Chứng minh rằng: \(x^3+y^3+3xy=1\)
Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(x-\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow-2\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)
\(\Leftrightarrow x-\sqrt{x^2+2}+y-1+\sqrt{y^2-2y+3}=0\) (*)
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)\left(y-1-\sqrt{y^2-2y+3}\right)=2\left(y-1-\sqrt{y^2-2y+3}\right)\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right).-2=2\left(y-1-\sqrt{y^2+2y+3}\right)\)
\(\Leftrightarrow y-1-\sqrt{y^2+2y+3}+x+\sqrt{x^2+2}=0\) (2*)
Cộng vế với vế của (*) và (2*) => \(2x+2y-2=0\)
\(\Leftrightarrow x+y=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\)
Ta có:`(x+sqrt{x^2+2})(sqrt{x^2+2}-x)=2`
`<=>sqrt{x^2+2}-x=y-1+sqrt{y^2-2y+3}`
`<=>sqrt{x^2+2}-sqrt{y^2-2y+3}=x+y-1(1)`
CMTT:`sqrt{y^2-2y+3}-(y-1)=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-y+1=x+sqrt{x^2+2}`
`<=>sqrt{y^2-2y+3}-sqrt{x^2+2}=x+y-1(2)`
Cộng từng vế (1)(2) ta có:
`2(x+y-1)=0`
`<=>x+y-1=0`
`<=>x+y=1`
`<=>(x+y)^3=1`
`<=>x^3+y^3+3xy(x+y)=1`
`<=>x^3+y^3+3xy=1`(do `x+y=1`)
chúng minh rằng
a) 9x2-6x+2>0 \(\forall x \)
b)x2+x+1>0 \(\forall x \)
c) 25x2-20x+7>0 \(\forall x \)
d)9x2-6xy+2y2+1>0 \(\forall x ,y\)
e) x2-xy+y2 \(\ge0\forall x,y\)
hãy giúp mình nhé
a)
Đặt \(A=9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x+1+1\)
\(=\left(3x+1\right)^2+1\)
Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)
Hay \(A\ge1>0;\forall x\)
Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức
\(a,9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x.1+1^2+1\)
\(=\left(3x-1\right)^2+1\)
Vì\(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)
\(\Rightarrow9x^2-6x+2>0\forall x\)
\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
\(\Rightarrow x^2+x+1>0\forall x\)
À xin lỗi sửa sai chút là \(\left(3x-1\right)^2\)nhé
Chứng minh rằng :
\(x^3+y^3\ge x^2y+xy^2,\forall\ge0,\forall y\ge0\)
\(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\left(1\right)\)
*) Xét \(x=y=0\) thì \(\left(1\right)\) luôn đúng
*) Xét \(x,y>0\) ta có: \(VT=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2xy\Rightarrow x^2-xy+y^2\ge2xy-xy=xy\)
\(\Rightarrow VT=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\left(2\right)\)
Lại có: \(VP=x^2y+xy^2=xy\left(x+y\right)\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\) suy ra BĐT được chứng minh
Vậy \(x^3+y^3\ge x^2y+xy^2\forall x,y\ge0\)
x3+y3\(\geq\) x2y + xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0
Xét x=0,y=0 thì bất đẳng thức này luôn đúng.(*)
Xét x>0,y>0,ta có CM bất đẳng thức đó luôn đúng
x3+y3\(\geq\) x2y+xy2
\(\Leftrightarrow\) x3+y3-x2y-xy2\(\geq\)0
\(\Leftrightarrow\) (x3-x2y) + (y3-xy2) \(\geq\)0
\(\Leftrightarrow\) x2(x-y) - y2(x-y) \(\geq\) 0
\(\Leftrightarrow\) (x-y)(x2-y2) \(\geq\) 0
\(\Leftrightarrow\) (x-y)(x-y)(x+y) \(\geq\) 0
\(\Leftrightarrow\) (x-y)2(x+y) \(\geq\) 0 (1)
Ta có (x-y)2\(\geq\)0, x+y >0(vì x>0,y>0)
Nên bất phương trình (1); (x-y)2(x+y) \(\geq\) 0(luôn đúng)(**)
Từ(*) và (**) suy ra BĐT được chứng minh:
x3+y3\(\geq\) x2y+xy2, \(\forall\)x\(\geq\)0,\(\forall\)y\(\geq\)0
Dấu "=" xảy ra khi và chỉ khi x=y.
chứng minh rằng :
a, x+2y+\(\dfrac{25}{x}\)+\(\dfrac{27}{y^2}\)\(\ge\) 19 ( \(\forall\)x,y \(\)> 0 )
b, \(x+\dfrac{1}{\left(x-y\right)y}\ge3\) ( \(\forall\)x>y>0 )
c,\(\dfrac{x}{2}+\dfrac{16}{x-2}\ge13\left(\forall x>2\right)\)
d, \(a+\dfrac{1}{a^2}\ge\dfrac{9}{4}\left(\forall x\ge2\right)\)
e, a+\(\dfrac{1}{a\left(a-b\right)^2}\ge2\sqrt{2}\) ( \(\forall x>y\ge0\))
f, \(\dfrac{2a^3+1}{4b\left(a-b\right)}\ge3[\forall a\ge\dfrac{1}{2};\dfrac{a}{b}>1]\)
g, x+\(\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge3\left(\forall x>y\ge0\right)\)
h, \(2a^4+\dfrac{1}{1+a^2}\ge3a^2-1\)