Những câu hỏi liên quan
NQ
Xem chi tiết
KR
8 tháng 11 2023 lúc 22:33

`#3107.101107`

\(A=1+3+3^2+3^3+...+3^{101}\)

$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$

$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2)  + ... + 3^{99}(1 + 3 + 3^2)$

$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$

$A = 13(1 + 3^3 + ... + 3^{99})$

Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`

`\Rightarrow A \vdots 13`

Vậy, `A \vdots 13.`

Bình luận (1)
H24
8 tháng 11 2023 lúc 22:35

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)

Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)

nên \(A\vdots13\)

\(\text{#}Toru\)

Bình luận (1)
HL
Xem chi tiết
HH
Xem chi tiết
NT
19 tháng 12 2021 lúc 11:51

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

Bình luận (0)
NH
Xem chi tiết
NN
14 tháng 8 2023 lúc 22:20

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

Bình luận (1)
NT
14 tháng 8 2023 lúc 22:09

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

Bình luận (2)
GH
Xem chi tiết
GD

\(S=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\\ =\left(3+3^2+3^3\right)+3^3.\left(3+3^2+3^3\right)+3^6.\left(3+3^2+3^3\right)\\ =39+3^3.39+3^6.39\\ =-39.\left(-1-3^3-3^6\right)⋮\left(-39\right)\)

Bình luận (0)
ND
30 tháng 6 2023 lúc 16:21

S = 3 + 32 + 33 + 34 + 35 + 3+ 37 + 38 + 39

S = ( 3 + 32 + 33 ) +3+ 35 + 36 + 37 + 38 + 3

S = 39 + 34 + 35 + 36 + 37 + 38 + 39

Vì 39 ⋮ -39

<=> S ⋮ -39

Bình luận (0)
TQ
Xem chi tiết
NH
24 tháng 5 2023 lúc 20:53

  C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324

3C =      32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325

3C - C = -325 - 3

2C      = -325 - 3

2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\)  + 3]

2C = - \(\overline{..6}\)

⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\) 

⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)

Bình luận (0)
NH
24 tháng 5 2023 lúc 21:02

b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0

Vì (\(x+1\))2022 ≥ 0 

\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0

Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0

⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:

(\(x,y\)) = (-1; 1)

Bình luận (0)
NB
Xem chi tiết
H24
29 tháng 10 2023 lúc 20:20

\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)

Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)

nên \(B\vdots4\).

Bình luận (0)
KR
29 tháng 10 2023 lúc 20:21

`#3107.101107`

\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)

\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)

\(=4\left(3+3^3+3^5+3^7\right)\)

Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$

`\Rightarrow B \vdots 4`

Vậy, `B \vdots 4.`

Bình luận (0)
H24
29 tháng 10 2023 lúc 20:22

B=3+32+33+34+35+36+37+38=(3+32)+(33+34)+(35+36)+(37+38)=3(1+3)+33(1+3)+35(1+3)+37(1+3)=34+334+354+374=4(3+33+35+37)

Vì 4⋅(3+33+35+37)⋮4

nên �⋮4.

Bình luận (0)
TT
Xem chi tiết
HN
17 tháng 10 2021 lúc 16:54

undefined

Bình luận (0)
H24
Xem chi tiết
H24
17 tháng 12 2021 lúc 21:09

Các bạn giúp mình nhé

Bình luận (0)
NT
18 tháng 12 2021 lúc 0:21

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

Bình luận (1)