Những câu hỏi liên quan
H24
Xem chi tiết
NT
24 tháng 6 2024 lúc 10:45

Câu 6: Để hàm số y=(1-m)x+3 nghịch biến trên R thì 1-m<0

=>m>1

=>Chọn B

Câu 7: D

Câu 10: (D)//(D')

=>\(\left\{{}\begin{matrix}3m+1=2\left(m+1\right)\\-2\ne-2\left(loại\right)\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

=>Chọn D

Câu 11: \(x^2+2x+2=\left(x+1\right)^2+1>=1>0\forall x\)

=>\(\sqrt{x^2+2x+2}\) luôn xác định với mọi số thực x

=>Chọn A

Câu 12: Để hai đường thẳng y=x+3m+2 và y=3x+2m+3 cắt nhau tại một điểm trên trục tung thì \(\left\{{}\begin{matrix}1\ne3\left(đúng\right)\\3m+2=2m+3\end{matrix}\right.\)

=>3m+2=2m+3

=>m=1

=>Chọn C

Bình luận (0)
NA
Xem chi tiết
AH
31 tháng 5 2023 lúc 11:45

Bài nào bạn?

Bình luận (0)
TT
Xem chi tiết
DH
26 tháng 4 2021 lúc 18:06

1 A

2 B

3 C

4 A

5 D

6 D

7 A

8 B

Bình luận (0)
H24
Xem chi tiết
NL
22 tháng 7 2021 lúc 8:23

1.

Dễ dàng tìm được tọa độ 2 giao điểm, do vai trò của A, B như nhau, giả sử \(A\left(2;4\right)\) và \(B\left(-1;1\right)\)

Gọi C và D lần lượt là 2 điểm trên trục Ox có cùng hoành độ với A và B, hay \(C\left(2;0\right)\) và \(D\left(-1;0\right)\)

Khi đó ta có ABDC là hình thang vuông tại D và C, các tam giác OBD vuông tại D và tam giác OAC vuông tại C

Độ dài các cạnh: \(BD=\left|y_B\right|=1\) ; \(AC=\left|y_A\right|=4\)

\(OD=\left|x_D\right|=1\) ; \(OC=\left|x_C\right|=2\) ; \(CD=\left|x_C-x_D\right|=3\)

Ta có:

\(S_{OAB}=S_{ABDC}-\left(S_{OBD}+S_{OAC}\right)\)

\(=\dfrac{1}{2}CD.\left(AC+BD\right)-\left(\dfrac{1}{2}BD.OD+\dfrac{1}{2}AC.OC\right)\)

\(=\dfrac{1}{2}.3.\left(4+1\right)-\left(\dfrac{1}{2}.1.1+\dfrac{1}{2}.4.2\right)=3\)

undefined

Bình luận (0)
DQ
Xem chi tiết
NT
8 tháng 4 2022 lúc 18:29

Câu 4: 

Thay x=2 và y=-1 vào hệ, ta được:

\(\left\{{}\begin{matrix}2a-b=4\\2b+2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\a=1\end{matrix}\right.\)

Bình luận (0)
NH
Xem chi tiết
PH
Xem chi tiết
PH
13 tháng 1 2022 lúc 11:12

hic cíu mng oi

 

Bình luận (0)
NT
13 tháng 1 2022 lúc 15:51

a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)

b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)

\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)

Bình luận (1)
NT
Xem chi tiết
TA
Xem chi tiết
TA
23 tháng 8 2021 lúc 8:05

Bình luận (0)
DT
23 tháng 8 2021 lúc 8:05

Thiếu đề rùi bạn?

Bình luận (1)
TA
23 tháng 8 2021 lúc 8:05

Bình luận (0)