Những câu hỏi liên quan
VD
Xem chi tiết
DM
25 tháng 3 2021 lúc 16:58

hello l am Duong quang minh, nice to meet you, how old are you, l am nine how do you spell your name ,m-i-n-h 

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
AH
14 tháng 10 2021 lúc 23:28

Lời giải:

$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$

Nếu đây là scp thì $n^2+n+1$ cũng phải là scp

Đặt $n^2+n+1=t^2$ với $t$ tự nhiên 

$\Leftrightarrow 4n^2+4n+4=(2t)^2$

$\Leftrightarrow (2n+1)^2+3=(2t)^2$

$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$

$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$

$\Rightarrow n=0$ (trái giả thiết)

Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$

$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$

Ta có đpcm.

Bình luận (0)
VA
Xem chi tiết
PN
9 tháng 12 2017 lúc 19:44

Đặt \(n^3-n+2=a^2\)

<=>  \(n\left(n-1\right)\left(n+1\right)+2=a^2\)

Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)

=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)

Mà   1 số chính phương chia 3 dư 0 hoặc 1

=>  \(n^3-n+2\) không thể là số chính phương

Bình luận (0)
VD
Xem chi tiết
AL
Xem chi tiết
NO
Xem chi tiết
HF
23 tháng 7 2020 lúc 11:07

Ta có:

+) \(\left(2n^2+n+2\right)^2=4n^4+4n^3+9n^2+4n+4>4n^4+4n^3+6n^2+3n+2\)

     Giải thích: \(3n^2+n+2>0\forall n\inℤ\)

+)\(4n^4+4n^3+6n^2+3n+2>4n^4+4n^3+5n^2+2n+1=\left(2n^2+n+1\right)^2\)

     Giải thích: \(n^2+n+1>0\forall n\inℤ\)

Ta thấy \(4n^4+4n^3+6n^2+3n+2\)bị kẹp giữa 2 số chính phương liên tiếp nên không thể là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
NO
24 tháng 7 2020 lúc 20:06

làm sao bạn tìm ra hai bình phương kẹp A ở giữa thế bạn, chỉ mik với?

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
TT
Xem chi tiết
TH
29 tháng 3 2022 lúc 19:26

-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)

\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)

\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)

\(\Leftrightarrow-2n-4043+2022< 0\)

\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)

-Từ điều trên ta suy ra:

\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.

 

Bình luận (0)
NV
Xem chi tiết
NL
5 tháng 1 2024 lúc 7:07

Do n lẻ \(\Rightarrow n=2k+1\)

Đặt \(a=7^n+24=7^{2k+1}+24=7.49^k+24\)

Do \(\left\{{}\begin{matrix}49\equiv1\left(mod4\right)\\7\equiv3\left(mod4\right)\\24\equiv0\left(mod4\right)\end{matrix}\right.\) \(\Rightarrow7.49^k+24\equiv3\left(mod4\right)\)

Mà các số chính phương chia 4 chỉ có các số dư 0 hoặc 1

\(\Rightarrow a\) không thể là SCP hay \(7^n+24\) ko là SCP với mọi số tự nhiên lẻ n

Bình luận (0)