Tìm x:[(6x^2-12)÷3]×16=64
Tìm x: a) (3x-1)(2x+7) - (x+1)(6x-5) = 16
b) (2x+3)2 - 2(2x+3)(2x-5) + (2x-5)2 = x2 + 6x + 64
tìm x :
a. 6x3 - 24x = 0
b. 2x(x - 3) - 4x + 12 = 0
c.2 (x - 2) = 3x2 -6x
d. x2 - 6x = 16
a) 6x3 - 24x = 0
⇔ 6x( x2 - 4 ) = 0
⇔ 6x( x - 2 )( x + 2 ) = 0
⇔ 6x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0
⇔ x = 0 hoặc x = ±2
b) 2x( x - 3 ) - 4x + 12 = 0
⇔ 2x( x - 3 ) - 4( x - 3 ) = 0
⇔ ( x - 3 )( 2x - 4 ) = 0
⇔ x - 3 = 0 hoặc 2x - 4 = 0
⇔ x = 3 hoặc x = 2
c) 2( x - 2 ) = 3x2 - 6x
⇔ 2( x - 2 ) = 3x( x - 2 )
⇔ 2( x - 2 ) - 3x( x - 2 ) = 0
⇔ ( x - 2 )( 2 - 3x ) = 0
⇔ x - 2 = 0 hoặc 2 - 3x = 0
⇔ x = 2 hoặc x = 2/3
d) x2 - 6x = 16
⇔ x2 - 6x - 16 = 0
⇔ ( x2 - 6x + 9 ) - 25 = 0
⇔ ( x - 3 )2 - 52 = 0
⇔ ( x - 3 - 5 )( x - 3 + 5 ) = 0
⇔ ( x - 8 )( x + 2 ) = 0
⇔ x - 8 = 0 hoặc x + 2 = 0
⇔ x = 8 hoặc x = -2
a) 6x^3-24x=0
<=>6x(x^2-4)=0
<=>6x(x-2)(x+2)=0
<=>6x=0 => x=0
x-2=0 => x=2
x+2=0 => x=-2
b) 2x(x-3)-4x+12=0
<=>2x(x-3)-(4x-12)=0
<=>2x(x-3)-4(x-3)=0
<=>(2x-4)(x-3)=0
<=>2x-4=0 => x=2
x-3=0 => x=3
c) 2(x-2)=3x^2-6x
<=>2(x-2)=3x(x-2)
<=>2=3x
<=>x=2/3
d) x2-6x=16
<=> x^2-6x+9=25
<=>(x-3)^2=25
<=> x-3=5 => x=8
x-3=-5 => x=-2
Tìm x, biết :
(1/2-1/3).6x+6x+2=67+64
\(\left(\frac{1}{2}-\frac{1}{3}\right).6x+6x+2=67+64\)
\(\frac{\Rightarrow1}{6}.6x+6x+2=131\)
\(\Rightarrow x+6x=131-2\)
\(\Rightarrow7x=129\)
\(\Rightarrow x=\frac{129}{7}\)
Tìm x, biết:
a) 230 + 2 4 + ( x - 5 ) = 315 . 2018 0 ;
b) 707 : 2 x - 5 + 74 = 4 2 - 3 2 ;
c) [(6x - 12): 3].32 = 64;
d) (x:7 + 15).23 = 391
a) x = 74
b) x = 5
c) x = 3
d) x = 14
Tìm x biết
(16x+28):4=32.3
(3x-1)2=64
46x-8.16+2.417=415.18+78.415
x=4x=4 là nghiệm của những phương trình nào dưới đây?
\frac{x^2-6x+8}{x^2-9x+20}=0x2−9x+20x2−6x+8=0 \frac{4x-16+\left(8-2x\right)}{x^2+16}=0x2+164x−16+(8−2x)=0 \frac{x^2-16}{x^3+16}=0x3+16x2−16=0 \frac{x^3-64}{x^2-16}=0x2−16x3−64=0Hãy chứng tỏ các phân thức sau bằng nhau
a/ \(\dfrac{x+3}{2x-5}=\dfrac{x^2+3x}{2x^2-5x}\)
b/ \(\dfrac{3-x}{x+3}=\dfrac{x^2-6x+9}{9-x^{ }}\)
c/ \(\dfrac{x^3+64}{\left(3-x\right)\left(x^2-4x+16\right)}\)\(=\dfrac{x-4}{x-3}\)
d/ \(\dfrac{x^3+6x^2-x-30}{x^3+3x^2-25x-75}=\dfrac{x-2}{x-5}\)
AI GIÚP MK VS Ạ AI NHANH MK SẼ VOTE Ạ
\(a,VP=\dfrac{x\left(x+3\right)}{x\left(2x-5\right)}=\dfrac{x+3}{2x-5}=VT\\ b,VP=\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\dfrac{3-x}{x+3}=VT\\ c,VP=\dfrac{\left(x+4\right)\left(x^2-4x+16\right)}{\left(3-x\right)\left(x^2-4x+16\right)}=\dfrac{x+4}{3-x}=VP\left(bạn.sửa.lại.đề.đi\right)\\ d,VT=\dfrac{x^3-2x^2+8x^2-16x+15x-30}{x^3-5x^2+8x^2-40x+15x-75}\\ =\dfrac{\left(x-2\right)\left(x^2+8x+15\right)}{\left(x-5\right)\left(x^2+8x+15\right)}=\dfrac{x-2}{x-5}=VP\)
1Tính Nhanh
A; 2 x 31 x 12 x 4 + 6x 42+8 x 27x 3
B; 36 x 28 +36 x 82 + 64 x 69 + 64 x 41
B; 36 x 28 + 36 x 82 + 64 x 69 + 64 x 41
= 36 x (28+82) + 64 x (69 + 41)
= 36 x 110 + 64 x 110
= (36+64) x 110
= 100 x 110
= 11000
b) 36 nhan ( 28+82) + 64 nhan ( 69 + 41)
= 36. 110 + 64 . 110
= 110 . ( 36 + 64 )
= 110 .100
=11000
Tìm x , biết :
a) (3x -1)(2x+7) -(x+1)(6x-5) =16
b) (2x +3)2-2(2x+3)(2x-5)+(2x-5)2= x2+6x+64
c) (x4+2x3+10x-25): (x2+5)=3
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)
\(\Leftrightarrow18x-18=0\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=18:18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
b) \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2-\left(x^2+6x+64\right)=0\)
\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)
\(\Leftrightarrow8^2-x^2-6x-64=0\)
\(\Leftrightarrow64-x^2-6x-64=0\)
\(\Leftrightarrow-x^2-6x=0\)
\(\Leftrightarrow x\left(-x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=-6\)
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)
\(\Leftrightarrow18x-18=0\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=18:18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
b, \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x- 5\right)^2=x^2+6x+64\)
\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2- \left(x^2+6x+64\right)=0\)
\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)
\(\Leftrightarrow8^2-x^2-6x-64=0\)
\(\Leftrightarrow64-x^2-6x-64=0\)
\(\Leftrightarrow-x^2-6x=0\)
\(\Leftrightarrow x\left(-x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=6\)
a) (3x−1)(2x+7)−(x+1)(6x−5)=16(3x−1)(2x+7)−(x+1)(6x−5)=16
⇔(6x2+21x−2x−7)−(6x2−5x+6x−5)−16=0⇔(6x2+21x−2x−7)−(6x2−5x+6x−5)−16=0
⇔6x2+21x−2x−7−6x2+5x−6x+5−16=0⇔6x2+21x−2x−7−6x2+5x−6x+5−16=0
⇔18x−18=0⇔18x−18=0
⇔18x=18⇔18x=18
⇔x=18:18⇔x=18:18
⇔x=1⇔x=1
Vậy x=1x=1
b) (2x+3)2−2(2x+3)(2x−5)+(2x−5)2=x2+6x+64(2x+3)2−2(2x+3)(2x−5)+(2x−5)2=x2+6x+64
⇔[(2x+3)−(2x−5)]2−(x2+6x+64)=0⇔[(2x+3)−(2x−5)]2−(x2+6x+64)=0
⇔(2x+3−2x+5)2−x2−6x−64=0⇔(2x+3−2x+5)2−x2−6x−64=0
⇔82−x2−6x−64=0⇔82−x2−6x−64=0
⇔64−x2−6x−64=0⇔64−x2−6x−64=0
⇔−x2−6x=0⇔−x2−6x=0
⇔x(−x−6)=0⇔x(−x−6)=0
⇔[x=0−x−6=0⇔[x=0−x−6=0
⇔[x=0−x=6⇔[x=0−x=6
⇔[x=0x=−6⇔[x=0x=−6
Vậy x=0x=0 hoặc x=−6