Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

TN

Tìm x , biết :

a) (3x -1)(2x+7) -(x+1)(6x-5) =16

b) (2x +3)2-2(2x+3)(2x-5)+(2x-5)2= x2+6x+64

c) (x4+2x3+10x-25): (x2+5)=3

NN
6 tháng 12 2017 lúc 19:41

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)

\(\Leftrightarrow18x-18=0\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=18:18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b) \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)

\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2-\left(x^2+6x+64\right)=0\)

\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)

\(\Leftrightarrow8^2-x^2-6x-64=0\)

\(\Leftrightarrow64-x^2-6x-64=0\)

\(\Leftrightarrow-x^2-6x=0\)

\(\Leftrightarrow x\left(-x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=-6\)

Bình luận (0)
LH
6 tháng 12 2017 lúc 20:13

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)

\(\Leftrightarrow18x-18=0\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=18:18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b, \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x- 5\right)^2=x^2+6x+64\)

\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2- \left(x^2+6x+64\right)=0\)

\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)

\(\Leftrightarrow8^2-x^2-6x-64=0\)

\(\Leftrightarrow64-x^2-6x-64=0\)

\(\Leftrightarrow-x^2-6x=0\)

\(\Leftrightarrow x\left(-x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=6\)

Bình luận (0)
H24
22 tháng 12 2017 lúc 20:55

a) (3x1)(2x+7)(x+1)(6x5)=16(3x−1)(2x+7)−(x+1)(6x−5)=16

(6x2+21x2x7)(6x25x+6x5)16=0⇔(6x2+21x−2x−7)−(6x2−5x+6x−5)−16=0

6x2+21x2x76x2+5x6x+516=0⇔6x2+21x−2x−7−6x2+5x−6x+5−16=0

18x18=0⇔18x−18=0

18x=18⇔18x=18

x=18:18⇔x=18:18

x=1⇔x=1

Vậy x=1x=1

b) (2x+3)22(2x+3)(2x5)+(2x5)2=x2+6x+64(2x+3)2−2(2x+3)(2x−5)+(2x−5)2=x2+6x+64

[(2x+3)(2x5)]2(x2+6x+64)=0⇔[(2x+3)−(2x−5)]2−(x2+6x+64)=0

(2x+32x+5)2x26x64=0⇔(2x+3−2x+5)2−x2−6x−64=0

82x26x64=0⇔82−x2−6x−64=0

64x26x64=0⇔64−x2−6x−64=0

x26x=0⇔−x2−6x=0

x(x6)=0⇔x(−x−6)=0

[x=0x6=0⇔[x=0−x−6=0

[x=0x=6⇔[x=0−x=6

[x=0x=6⇔[x=0x=−6

Vậy x=0x=0 hoặc x=6

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
HH
Xem chi tiết
HN
Xem chi tiết
HM
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
DV
Xem chi tiết
ST
Xem chi tiết
HT
Xem chi tiết