Những câu hỏi liên quan
NQ
Xem chi tiết
AH
21 tháng 7 2017 lúc 23:19

Lời giải:

Đặt \((x,y,z)=(a^2,b^2,c^2)\). Bài toán tương đương với:

\(\frac{bc(b+c)}{a}+\frac{ac(a+c)}{b}+\frac{ab(a+b)}{c}\geq 2(a^2+b^2+c^2)\)

Biến đổi ta thấy:

\(\text{VT}=a^2\left ( \frac{b}{c}+\frac{c}{b} \right )+b^2\left ( \frac{a}{c}+\frac{c}{a} \right )+c^2\left ( \frac{a}{b}+\frac{b}{a} \right )\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} \frac{a}{b}+\frac{b}{a}\geq 2\\ \frac{a}{c}+\frac{c}{a}\geq 2\\ \frac{b}{c}+\frac{c}{b}\geq 2\end{matrix}\right.\Rightarrow \text{VT}\geq 2(a^2+b^2+c^2)=\text{VP}\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\Leftrightarrow x=y=z>0\)

Bình luận (1)
LF
22 tháng 7 2017 lúc 9:10

Áp dụng BĐT AM-GM ta có:

\(\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge\dfrac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\dfrac{2yz}{x}\)

Tương tự cho 2 BĐT còn lại thì được:

\(\dfrac{2xy}{z}+\dfrac{2yz}{x}+\dfrac{2xz}{y}\ge2\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\)

Tiếp tục dùng AM-GM:

\(\dfrac{xy}{z}+\dfrac{yz}{x}\ge2\sqrt{y^2}=2y\)

Tương tự rồi cộng theo vế có:

\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\) (đúng)

Hay ta có ĐPCM. Khi \(x=y=z\)

Bình luận (0)
CW
21 tháng 7 2017 lúc 22:44

Đề này à: \(\dfrac{\left(y+z\right)\sqrt{yz}}{x}+\dfrac{\left(z+x\right)\sqrt{zx}}{y}+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge2\left(x+y+z\right)\)

Dùng máy tính kiểm tra. (đề sai không?)

Thế x=1, y=2, z=3

VT = 17,12576389

VP = 12

Bình luận (1)
VN
Xem chi tiết
AH
7 tháng 9 2021 lúc 8:06

Lời giải:

$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$

$=(2x-1)(2y-1)(2z-1)+1$

Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$

$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$

$\Rightarrow 2\text{VT}\leq 2$

$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.

Bình luận (0)
LL
Xem chi tiết
LL
29 tháng 12 2018 lúc 16:07

ai giúp mình với

Bình luận (0)
LL
29 tháng 12 2018 lúc 16:10

...

Bình luận (0)
ND
13 tháng 5 2024 lúc 22:39

Ta có:
         \(\dfrac{x-y}{1+xy}\)+\(\dfrac{y-z}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) = \(\dfrac{x-y}{1+xy}\)+\(\dfrac{-\left(x-y\right)-\left(z-x\right)}{1+yz}\)+\(\dfrac{z-x}{1+xz}\)

         =\(\dfrac{x-y}{1+xy}\)\(-\dfrac{x-y}{1+yz}\) \(-\dfrac{z-x}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) 

         = \(\left(x-y\right)\)\(\left(\dfrac{\left(1+yz\right)-\left(1+xy\right)}{\left(1+yz\right)\left(1+xy\right)}\right)\)+(\(z-x\))\(\left(\dfrac{\left(1+yz\right)-\left(1+zx\right)}{\left(1+yz\right)\left(1+zx\right)}\right)\)

         =\(\left(x-y\right)\)\(\dfrac{y\left(z-x\right)}{\left(1+yz\right)\left(1+xy\right)}\)+(\(z-x\))\(\dfrac{-z\left(x-y\right)}{\left(1+yz\right)\left(1+zx\right)}\)

         =\(\left(\dfrac{\left(x-y\right)\left(z-x\right)}{1+yz}\right)\)\(\left(\dfrac{y\left(1+xz\right)-z\left(1+xy\right)}{\left(1+xz\right)\left(1+xy\right)}\right)\)

       =đpcm

Bình luận (0)
KG
Xem chi tiết
LP
8 tháng 12 2023 lúc 21:31

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

Bình luận (0)
LM
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
LH
7 tháng 6 2021 lúc 17:38

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

Bình luận (0)
EC
Xem chi tiết
VH
Xem chi tiết
PK
24 tháng 4 2020 lúc 9:20

Violympic toán 9Violympic toán 9

Bình luận (0)