Những câu hỏi liên quan
BT
Xem chi tiết
BA
Xem chi tiết
PV
Xem chi tiết
AH
28 tháng 2 2024 lúc 19:05

Lời giải:

$B=|\frac{(a-c)(b-a)(b+c)}{abc}|$

Do $a-b-c=0$ nên: $b-a=-c; a-c=b; b+c=a$

$\Rightarrow (a-c)(b-a)(b+c)=b(-c)a=-abc$

$\Rightarrow B=|\frac{-abc}{abc}|=|-1|=1$

Bình luận (0)
NN
Xem chi tiết
TB
Xem chi tiết
HN
Xem chi tiết
VV
Xem chi tiết
DP
12 tháng 2 2019 lúc 18:56

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)

\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)

Nếu \(a+b+ c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow a+b=2c\)

      \(b+ c=2a\)

       \(c+a=2b\)

\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)

Bình luận (3)
VV
12 tháng 2 2019 lúc 15:10

chumia sư phụ cứu zới !!!

Bình luận (0)
BK
12 tháng 2 2019 lúc 16:14

a+b-c/c=b+c-a/a=c+a-b/b

=>a+b-1=b+c-1=c+a-1

=>a+b=b+c=c+a

Vì a+b=b+c

=>a=b+c-b

=>a=c

Vì b+c=c+a

=>b=c+a-c

=>b=a

Mà a=c

=>a=b=c

Ta có:B=(1+b/a).(1+a/c).(1+c/b)

=>B=(1+b/b).(1+a/a).(1+c/c)

=>B=(1+1).(1+1).(1+1)

=>B=2.2.2

=>B=8

Vậy B=8

Hok tốt!

Bình luận (0)
H24
Xem chi tiết
PD
18 tháng 12 2016 lúc 21:17

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)

Xét a+b+c=0

\(\Rightarrow a+b=-c,c+b=-a,a+c=-b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)

Xét a+b+c\(\ne0\)

\(\Rightarrow a+b=2c,b+c=2a,c+a=2b\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=8\)

 

Bình luận (0)
NT
18 tháng 12 2016 lúc 21:30

Giải:
+) Xét a + b + c = 0

\(\Rightarrow-a=b+c\)

\(\Rightarrow-b=a+c\)

\(\Rightarrow-c=a+b\)

Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{-c}{c}=\frac{-a}{a}=\frac{-b}{b}=-1\)

Lại có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=-1\)

+) Xét \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Ta có:

\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)

Vậy M = -1 hoặc M = 8

Bình luận (0)
TY
Xem chi tiết