Cho tam giác EGF vuông tại E, đường cao EI, EG=5,EF=7.Tính EI,GF
Cho tam giác DEF vuông tại E (ED<EF),đường cao EI, biết EF=12cm,IF=9,6cm.
a)Tính DF
b)Giải tam giác IDE
Cho tam giác DEF vuông tại (ED<EF),đường cao EI, biết EF=12cm, IF=9,6cm
a) Tính DE
b) Giaỉ tam giác IDE
Mọi người giúp mình bài này với
Cho tam giác DEF vuông tại E (ED<EF),đường cao EI, biết EF=12cm,IF=9,6cm.
a)Tính DF
b)Giải tam giác IDE
a: \(DF=\dfrac{EF^2}{IF}=15\left(cm\right)\)
Cho tam giác ADF vuông tại E, đường cao EI. Gọi A,B là hình chiếu của I lên ED và EF. A. cm: AE.ED = EB.PF = DI.IF B. Tính diện tích AEBI biết DF = 36 cm, EI = 13cm vẽ hình cho mik luôn nha nhanh vs ạ !!!!!!!!
Cho tam giác EGF vuông tại E, đường cao EH, tỉ số \(\dfrac{ER}{EF}=\dfrac{6}{5}\), EH=30cm. Tính GH,HF
Áp dụng hệ thức lượng vào tam giác vuông EGH có đường cao EH
\(\dfrac{1}{EH^2}=\dfrac{1}{EG^2}+\dfrac{1}{EF^2}\)
\(\dfrac{1}{30^2}=\dfrac{1}{\left(\dfrac{6EF}{5}\right)^2}+\dfrac{1}{EF^2}\)
\(\Rightarrow EF=5\sqrt{61}\)\(\Rightarrow EG=\dfrac{6.5\sqrt{61}}{5}=6\sqrt{61}\)
Áp dụng định lí Pytago vào tam giác GEF vuông tại E
\(\Rightarrow GF=\sqrt{\left(5\sqrt{61}\right)^2+\left(6\sqrt{61}\right)^2}=61\)
Áp dụng định lí Pytago vào tam giác EHG vuông tại H
\(GH=\sqrt{\left(6\sqrt{61}\right)^2-30^2}=36\)
\(\Rightarrow HF=61-36=25\)
cho tam giác DEF vuông tại D , DI là đường cao .biết DF=36cm EF= 45cm tính DE , DI ,EI,FI
- Áp dụng định lý pitago vào tam giác DEF vuông tại D :
\(DE=\sqrt{FE^2-DF^2}=27\left(cm\right)\)
- Áp dụng hệ thức lượng vào tam giác DEF vuông tại D đường cao DI
\(\left\{{}\begin{matrix}DI.FE=DE.DF\\DE^2=EI.FE\\DF^2=FI.FE\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}DI=21,6\\EI=16,2\\FI=28,8\end{matrix}\right.\) ( cm )
Vậy ...
pyta go \(=>DE=\sqrt{ÈF^2-DF^2}=\sqrt{45^2-36^2}=27cm\)
áp dụng hệ thức lượng
\(=>DI.EF=DE.DF=>DI=\dfrac{27.36}{45}=21,6cm\)
\(=>DE^2=EI.EF=>EI=\dfrac{27^2}{45}=16,2cm\)
\(=>FI=45-16,2=28,8cm\)
Áp dụng định lí py-ta-go vào tam giác DFE vuông tại D có:
\(DE^2=EF^2-DF^2=729\)
\(\Rightarrow DE=27\) (cm)
Áp dụng ht lượng trong tam giác vuông có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{27^2}+\dfrac{1}{36^2}=\dfrac{2025}{27^2.36^2}\)
\(\Leftrightarrow DI^2=\dfrac{27^2.36^2}{45^2}\)\(\Leftrightarrow DI=\dfrac{27.36}{45}=21,6\) (cm)
\(DE^2=EI.EF\Leftrightarrow EI=\dfrac{DE^2}{EF}=\dfrac{27^2}{45}=16,2\) (cm)
\(DF^2=FI.EF\Leftrightarrow FI=\dfrac{DF^2}{EF}=\dfrac{36^2}{45}=28,8\) (cm)
3, Cho tam giác ABC vuông tại A có AC=5cm; cotB=2,4
a, tính AB; BC
b, Tìm tỉ số lượng giác của góc C
4, Cho tam giác DEF có ED=7cm; góc D =40*;F = 58*. Kẻ đường cao EI của tam giác đó. Tính
a, EI, EF
b, Diện tích tam giác EDF
Cho tam giác ABC . Vẽ ra phía ngoài của tam giác này các tam giác vuông cân tại A là tam giác ABE và ACF . Vẽ AH vuông góc BC tại H . Đường thẳng AH cắt EF tại O ,kẻ EI vuông góc CH tại I
a)CMR : EI = AH
b) Cm O là trung điểm EF
Bạn tham khảo ở đây nhé
Câu hỏi của be hat tieu - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác DEF vuông tại D có DE = 15cm; DF = 20cm. Vẽ đường phân giác DI
( I∈EF). Tính EI, FI ta được:
Xét ΔDEF vuông ở D , theo định lý Pi-ta-go ta được :
\(\Rightarrow EF=\sqrt{DE^2+DF^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
Ta có : DI là phân giác \(\widehat{EDF}\)
\(\Rightarrow\dfrac{EI}{IF}=\dfrac{DE}{DF}\)
hay \(\dfrac{EI}{IF}=\dfrac{15}{20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{EI}{3}=\dfrac{IF}{4}=\dfrac{EI+IF}{3+4}=\dfrac{25}{7}\)
\(\Rightarrow EI=\dfrac{25}{7}.3=\dfrac{75}{7}\left(cm\right)\)
\(\Rightarrow FI=\dfrac{25}{7}.4=\dfrac{100}{7}\left(cm\right)\)