Những câu hỏi liên quan
BC
Xem chi tiết
SG
29 tháng 9 2016 lúc 22:37

Vì \(\left(2a+1\right)^2\ge0;\left(b+3\right)^4\ge0;\left(5c-6\right)^4\ge0\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\)

Mà theo đề bài: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)

\(\Rightarrow\begin{cases}\left(2a+1\right)^2=0\\\left(b+3\right)^4=0\\\left(5c-6\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2a+1=0\\b+3=0\\5c-6=0\end{cases}\)\(\Rightarrow\begin{cases}2a=-1\\b=-3\\5c=6\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{-1}{2}\\b=-3\\c=\frac{6}{5}\end{cases}\)

Vậy \(a=\frac{-1}{2};b=-3;c=\frac{6}{5}\)

Bình luận (0)
TB
Xem chi tiết
NL
27 tháng 6 2021 lúc 21:24

a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)

Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)

- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;

Bình luận (1)
LN
Xem chi tiết
KB
22 tháng 8 2017 lúc 21:14

tất cả đều mũ chẳn nên lớn hơn hoặc bằng 0 => để thõa mãn các tổng cộng lại bằng 0 => mỗi tổng bằng 0 

Bình luận (0)
ST
22 tháng 8 2017 lúc 21:16

a, Vì \(\hept{\begin{cases}\left(12a-9\right)^2\ge0\\\left(8b+1\right)^4\ge0\\\left(c+15\right)^6\ge0\end{cases}\Rightarrow\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+15\right)^6\ge0}\)

Mà \(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+15\right)^6\le0\)

\(\Rightarrow\hept{\begin{cases}\left(12a-9\right)^2=0\\\left(8b+1\right)^4=0\\\left(c+15\right)^6=0\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{-1}{8}\\c=-15\end{cases}}}\)

b, tương tự a

Bình luận (0)
H24
Xem chi tiết
AH
12 tháng 2 2023 lúc 19:12

Lời giải:
a. 

$f(-1)=a-b+c$

$f(-4)=16a-4b+c$

$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$

$\Rightarrow f(-4)=6f(-1)$

$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)

b.

$f(-2)=4a-2b+c$

$f(3)=9a+3b+c$

$\Rightarrow f(-2)+f(3)=13a+b+2c=0$

$\Rightarrow f(-2)=-f(3)$

$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)

Bình luận (0)
TV
2 tháng 3 2023 lúc 22:38

a. 


(

1
)
=



+

f(−1)=a−b+c


(

4
)
=
16


4

+

f(−4)=16a−4b+c



(

4
)

6

(

1
)
=
16


4

+


6
(



+

)
=
10

+
2


5

=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0



(

4
)
=
6

(

1
)
⇒f(−4)=6f(−1)



(

1
)

(

4
)
=

(

1
)
.
6

(

1
)
=
6
[

(

1
)
]
2

0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)] 
2
 ≥0 (đpcm)

b.


(

2
)
=
4


2

+

f(−2)=4a−2b+c


(
3
)
=
9

+
3

+

f(3)=9a+3b+c



(

2
)
+

(
3
)
=
13

+

+
2

=
0
⇒f(−2)+f(3)=13a+b+2c=0



(

2
)
=


(
3
)
⇒f(−2)=−f(3)



(

2
)

(
3
)
=

[

(
3
)
]
2

0
⇒f(−2)f(3)=−[f(3)] 
2
 ≤0 (đpcm

Bình luận (0)
MN
Xem chi tiết
IH
Xem chi tiết
LK
Xem chi tiết
TK
Xem chi tiết
IJ
Xem chi tiết
AT
24 tháng 8 2018 lúc 11:52

nhiều thế, đăng ít một thôi bạn

Bình luận (1)
AT
24 tháng 8 2018 lúc 12:01

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

Bình luận (1)
MP
24 tháng 8 2018 lúc 12:21

e) ta dể dàng thấy được : \(a^2+b^2=\left(a+b\right)^2-2ab\)

\(\Rightarrow E=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=\left(2a+2b\right)^2-2\left(a+b+c\right)\left(a+b-c\right)-2\left(a+b\right)^2\)

\(=4\left(a+b\right)^2-2\left(\left(a+b\right)^2-c^2\right)-2\left(a+b\right)^2\)

\(=4\left(a+b\right)^2-2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2=2c^2\)

g) củng sử dụng cái trên ta có : \(G=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)

\(=\left(2a+2b\right)^2-2\left(a+b+c+d\right)\left(a+b-c-d\right)+\left(2a-2b\right)^2-2\left(a+c-b-d\right)\left(a+d-b-c\right)\)

\(=4\left(a+b\right)^2+4\left(a-b\right)^2-2\left(\left(a+b\right)^2-\left(c+d\right)^2\right)-2\left(\left(a-b\right)^2-\left(c-d\right)^2\right)\)

\(=4\left(\left(a+b\right)^2+\left(a-b\right)^2\right)-2\left(\left(a+b\right)^2+\left(a-b\right)^2\right)+2\left(\left(c+d\right)^2+\left(c-d\right)^2\right)\)

\(=2\left(\left(a+b\right)^2+\left(a-b\right)^2\right)+2\left(\left(c+d\right)^2+\left(c-d\right)^2\right)\)

\(=2\left(\left(2a\right)^2-2\left(a+b\right)\left(a-b\right)\right)+2\left(\left(2c\right)^2-2\left(c+d\right)\left(c-d\right)\right)\)

\(=2\left(4a^2-2\left(a^2-b^2\right)\right)+2\left(4c^2-2\left(c^2-d^2\right)\right)\)

\(=2\left(2a^2+2b^2\right)+2\left(2c^2+2d^2\right)=4\left(a^2+b^2+c^2+d^2\right)\)

bn đăng nhiều quá nên mk làm câu nào hay câu đó nha

mà nè mấy câu a;b;c;d hình như trên mạng có bn lên đó tìm nha .

Bình luận (4)