Cho tam giác ABC có AB = 5, AC = 6, BC =7. Tính cosA.
Cho tam giác ABC có AB=4cm, BC=7cm, AC=9cm. Tính cosA và diện tích tam giác
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=\dfrac{2}{3}\)
\(sinA=\sqrt{1-cos^2A}=\dfrac{\sqrt{5}}{3}\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC.sinA=6\sqrt{5}\)
Cho tam giác ABC có AB = 2, AC = 2, BC = 1. Giá trị cosA bằng
A.7/16
B.7/32
C.7/8
D.0
Áp dụng hệ quả định lí cô sin trong tam giác ta có:
cos A = 2 2 + 2 2 − 1 2 2.2.2 = 7 8
Chọn C.
cho tam giác ABC có AB = 5 , AC = 6 , BC = 7 . Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
cho tam giác ABC. Gọi AA' ;BB' ; CC' là các đường cao
a. Chứng minh tam giác ABC đồng dạng Tam giác AB'C'
b. Chứng minh AB' . BC' . CA' = AB . BC . CA . cosA . cosB .cosC
c. cho góc A =30 độ ; AB= 4cm; AC= 8cm tính diện tích tam giác ABC
cho tam giác ABC có AB=5,AC=6,BC=7. Gọi G là trọng tâm tam giác ABC, O là giao điểm 2 đường phân giác BD,AE.
a, Tính AD
b, CMR OG//AC
Cho tam giác ABC cân tại A có góc A là góc nhọn thỏa mãn cosA=2/3. Vẽ đường tròn đường kính AB cắt AC ở D. Biết AB=6cm, tính độ dài BC.
1. Cho tam giác ABC đường cao AH và trung tuyến AM chia góc A thành 3 góc = nhau, K thuộc AC:AK=AH.CMR: a) góc AKM vuông b) Tính các góc của tam giác ABC
2. Cho tam giác ABC đều. D thuộc BC :BD=1/3 BC. ĐỂ vuông góc với BC ( E thuộc AB ). DF vuông góc với AC ( F thuộc AC ). Chứng minh a) BD =CF b) tam giác DEF đều
3. Cho tam giác ABC vuông tại A: AB = 15 cm, AC =20 cm., AH =12cm. Tính AB và AC
5. Cho tam giác ABC có AB =AC =5 cm, BC =6cm, đường phân giác AF. CMR: a) FB =FD, AF vuông góc với BC b) AF=?
4. Cho tam giác ABC vuông tại A, đường cao AH =6cm, BC =12,5cm, tỉ số HB :HC=9:16. Tính AB, AC
6. Cho tam giác ABC : BC =7,5cm, CA =4,5cm, AB =6cm. Hỏi tam giác ABC là tam giác gì?
7. Cho hình chữ nhật ABCD : AC=29cm, CD =20 cm. Tính diện tích hình chữ nhật
Cho tam giác ABC nhọn. Chứng minh rằng cosA + cosB + cosC = AB^2 + AC^2 + BC^2/4.S.ABC
Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)
Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\
=\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\
=\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)
Cho tam giác ABC có BC = 5, AC = 6 và AB = 7. Gọi O là giao điểm ba đường phân giác, G là trọng tâm của tam giác.
Tính độ dài đoạn OG.