Những câu hỏi liên quan
TA
Xem chi tiết
H24
28 tháng 1 2019 lúc 16:34

thay xyz=2017, ta có:

\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

Bình luận (0)

\(\text{Bài làm }\)

\(\text{ Gọi xyz = 2017}\)

\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

           \(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{# Chúc bạn học tốt #}\)

Bình luận (0)
H24
28 tháng 1 2019 lúc 16:47

@bn Thần chết:

đề bài cho xyz=2017 rồi nên ko được gọi nữa nhé

Bình luận (0)
ML
Xem chi tiết
H24
4 tháng 1 2018 lúc 19:19

Ta có : A = \(\dfrac{2017x}{xy+2017x+2017}+\dfrac{y}{yz+y+2017}+\dfrac{z}{xz+z+1}\)

A = \(\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\) (Vì xyz = 2017)

A = \(\dfrac{xy\left(xz\right)}{xy\left(1+xz+z\right)}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{xz+z+1}\)

A = \(\dfrac{xz}{1+xz+z}+\dfrac{1}{z+1+xz}+\dfrac{z}{xz+z+1}\)

A = \(\dfrac{xz+1+z}{xz+1+z}\) = 1

Vậy A = 1

Bình luận (0)
PA
Xem chi tiết
PA
7 tháng 2 2019 lúc 21:02

Nhanh k cho nè

Bình luận (0)
ZZ
7 tháng 2 2019 lúc 21:06

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

Bình luận (0)
ZZ
7 tháng 2 2019 lúc 21:14

b

Tổng quát:\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n^2+2n\right)-\left(n+2\right)}{n\left(n+1\right)}\)

\(=\frac{n\left(n+2\right)-\left(n+2\right)}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Thay số vào,ta được:

\(\frac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}\cdot\frac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}\cdot.....\cdot\frac{\left(2017-1\right)\left(2017+2\right)}{2017\left(2017+1\right)}\)

\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{2016\cdot2019}{2017\cdot2018}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot2016}{2\cdot3\cdot4\cdot...\cdot2017}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2019}{3\cdot4\cdot5\cdot...\cdot2018}\)

\(=\frac{1}{2017}\cdot\frac{2019}{3}=\frac{2019}{6051}\)

Bình luận (0)
KV
Xem chi tiết
TA
Xem chi tiết
DH
Xem chi tiết
NT
16 tháng 1 2018 lúc 19:42

\(D=\dfrac{2017x}{xy+2017x+2017}+\dfrac{y}{yz+y+2017}+\dfrac{z}{zx+z+1}\)

\(D=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
\(xyz=2017\)
\(D=\dfrac{xy\left(xz\right)}{xy\left(1+xz+z\right)}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz}{1+xz+z}+\dfrac{y}{y\left(z+1+xz\right)}+\dfrac{z}{zx+z+1}\)
\(D=\dfrac{xz+1+z}{1+xz+z}=1\)
Vậy D = 1

Bình luận (0)
V5
Xem chi tiết
BY
Xem chi tiết
H24
11 tháng 9 2021 lúc 22:01

Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)

Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)

=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
TL
12 tháng 12 2016 lúc 21:50

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

Bình luận (0)
SG
12 tháng 12 2016 lúc 21:50

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

Bình luận (0)
LF
12 tháng 12 2016 lúc 21:52

Thay xyz=2013 vào ta có:

\(\frac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy\cdot xz}{xy\left(xz+z+1\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz+1+z}{xz+z+1}=1\) (Đpcm)

Bình luận (0)