Tìm thành phần chưa biết x trong tỉ lệ thức: \(\dfrac{x}{{2,5}} = \dfrac{{10}}{{15}}\)
Tìm x trong các tỉ lệ thức sau:
\(a)\dfrac{x}{6} = \dfrac{{ - 3}}{4};b)\dfrac{5}{x} = \dfrac{{15}}{{ - 20}}\)
\(\begin{array}{l}a)\dfrac{x}{6} = \dfrac{{ - 3}}{4}\\x = \dfrac{{( - 3).6}}{4}\\x = \dfrac{{ - 9}}{2}\end{array}\)
Vậy \(x = \dfrac{{ - 9}}{2}\)
\(\begin{array}{l}b)\dfrac{5}{x} = \dfrac{{15}}{{ - 20}}\\x = \dfrac{{5.( - 20)}}{{15}}\\x = \dfrac{{ - 20}}{3}\end{array}\)
Vậy \(x = \dfrac{{ - 20}}{3}\)
tìm x trong các tỉ lệ thức sau:
\(\dfrac{4}{x}=\dfrac{8}{x+1}\)
\(\dfrac{3}{2}=\dfrac{9}{\left|x\right|}\)
\(\dfrac{15}{2x-1}=\dfrac{5}{3}\)
heeelp
bài 1 : tì tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) hãy suy ra
a, \(\dfrac{a}{a+b}\) = \(\dfrac{c}{c+d}\)
b, \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bài 2 : lập tỉ lệ thức có được từ các số sau
a, 3;4; 4 và 1 phần 2 ;5;6
b, 3;4;15;20
bài 3 : tìm x biết
a, \(\dfrac{x}{0,9}=\dfrac{5}{6}\)
b, \(\dfrac{14}{15}: \dfrac{9}{10}= x:\dfrac{3}{7}\)
c, \(\dfrac{-6}{x} = \dfrac{9}{-15}\)
d, 1 và 3 phần 5 chia 8 = 2,5 : x
e, \(\dfrac{x}{2}=\dfrac{8}{x}\)
g, \(\dfrac{3x-7}{8}=\dfrac{5}{2}\)
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
1 tìm các số hữu tỉ x,y thỏa mãn 3x=2y và x+y=-15
2 tìm các số hữu tỉ x,y biết rằng
a) x+y-z=20 và \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
b)\(\dfrac{x}{11}=\dfrac{y}{12};\dfrac{y}{3}=\dfrac{z}{7}\) và 2x-y+z=152
3) chia số 552 thành ba phần tỉ lệ nghịch 3;4;5 tính giá trị từng phần?
chia số 315 thành 3 phần tỉ lệ nghịch với 3:4:6. tính giá trị mỗi phần?
4 cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) chứng minh rằng
a)\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b)\(\dfrac{5a+2c}{5a+2d}=\dfrac{a-4c}{b-4d}\)
c\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Các bạn giúp mình với nhé mình dang cần gấp.mình xin cảm ơn
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 2:
b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)
nên \(\dfrac{y}{12}=\dfrac{z}{28}\)
mà \(\dfrac{x}{11}=\dfrac{y}{12}\)
nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)
mà 2x-y+z=152
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)
Vậy: (x,y,z)=(44;48;112)
Tìm các tỉ số bằng nhau trong các tỉ số sau rồi lập tỉ lệ thức:
\(12:30;\dfrac{3}{7}:\dfrac{{18}}{{24}};2,5:6,25\)\(12:30;\dfrac{3}{7}:\dfrac{{18}}{{24}};2,5:6,25\)
\(\begin{array}{l}12:30 = \dfrac{{12}}{{30}} = \dfrac{2}{5};\\\dfrac{3}{7}:\dfrac{{18}}{{24}} = \dfrac{3}{7}.\dfrac{{24}}{{18}} = \dfrac{3}{7}.\dfrac{{4}}{{3}} = \dfrac{4}{{7}};\\2,5:6,25 = \dfrac{{2,5}}{{6,25}} = \dfrac{{250}}{{625}} = \dfrac{2}{5}\end{array}\)
Như vậy, các tỉ số bằng nhau là: 12:30 và 2,5 : 6,25.
Ta được tỉ lệ thức: 12:30 = 2,5 : 6,25
1, Lập các tỉ lệ thức từ các đẳng thức sau :
a) (-2) . 15 = 5 . (-6)
b) 2,4 . 3,2 = 8 . 0,96
2, Tìm x trong các tỉ lệ thức
a) \(\dfrac{-1}{x}\) = \(\dfrac{3}{18}\)
b) 2,5 : 7,5 = x : \(\dfrac{3}{5}\)
3, Tìm x biết
a) 2x - 15 = 37 b) \(|2x+1|\)-\(\dfrac{3}{2}\)= \(\dfrac{7}{6}\)
4, Tìm các số x, y, z biết
a) \(\dfrac{x}{y}=\dfrac{17}{3}\) và x + y = -60
b) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{7}\) và x + y + z = 42
c) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và x - y + y = -49
1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)
Tìm các tỉ số bằng nhau trong các tỉ số sau đây rồi lập tỉ lệ thức:
\(7 : 21\); \(\dfrac{1}{5}:\dfrac{1}{2}\); \(\dfrac{1}{4}: \dfrac{3}{4}\); \(1,1 : 3,2; 1 : 2,5\)
\(7 : 21 = \dfrac{7}{{21}} = \dfrac{1}{3}\);
\(\dfrac{1}{5}:\dfrac{1}{2} = \dfrac{1}{5} .\dfrac{2}{1} = \dfrac{2}{5}\);
\(\dfrac{1}{4}:\dfrac{3}{4} = \dfrac{1}{4}.\dfrac{4}{3} = \dfrac{1}{3}\);
\( 1,1 : 3,2 = \dfrac{{1,1}}{{3,2}}=\dfrac{11}{32}\);
\(1 : 2,5 =\dfrac{1}{{2,5}}=\dfrac{10}{25}=\dfrac{2}{5}\).
Ta thấy có các tỉ số bằng nhau là :
+) \(\dfrac{1}{4}:\dfrac{3}{4}\) và \(7 : 21\) (vì cùng bằng \(\dfrac{1}{3}\)) nên ta có tỉ lệ thức : \(\dfrac{1}{4}:\dfrac{3}{4} = 7:21\).
+) \(\dfrac{1}{5}:\dfrac{1}{2}\) và \(1 : 2,5\) (vì cùng bằng \(\dfrac{2}{5}\)) nên ta có tỉ lệ thức : \(\dfrac{1}{5}:\dfrac{1}{2} = 1 : 2,5\).
Tìm x trong tỉ lệ thức \(\dfrac{5}{3} = \dfrac{x}{9}\)
Ta có : \(\dfrac{5}{3} = \dfrac{x}{9} \Rightarrow 5.9 = 3x \Leftrightarrow 45 = 3x \Rightarrow x = 45:3\)
\( \Rightarrow \) x = 15
Vậy x = 15
Giá trị của x trong tỉ lệ thức:\(\dfrac{5}{x}=\dfrac{3}{2}\) là:
A. 3
B. \(\dfrac{10}{3}\)
C. 10
D. \(\dfrac{4}{3}\)