Chứng minh :a^3+b^3=(a+b)x(a^2-ab+b^2)
Chứng minh đẳng thức
a, ( x + a) ( x + b ) = x^2 + ( a + b )x + ab
b, (a + b + c) ( a^2 + b^2 + c^2 - ab - bc - ca ) = a^3 + b^3 + c^3 = 3ab
Chứng minh đẳng thức
a, ( x + a ) ( x + b ) = x^2 + ( a + b )x + ab
b, ( a + b + c) ( a^2 + b^2 + c^2 - ab - bc - ca ) = a^3 + b^3 + c^3 = 3ab
a) (x+a).(x+b)=x2+bx+ax+ab=x2+(a+b)x+ab
b)(a+b+c)(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2b-abc-a2c+a2b+b3+bc2-ab2-b2c-ac2+a2c+b2c+c3-abc-bc2-ac2
=a3+b3+c3-3ab
Chứng minh đẳng thức
a, ( x + a) ( x + b) = x^2 + ( a + b )x + ab
b, ( a + b + c ) ( a^2 + b^2 + c^2 - ab - bc - ca) = a^3 + b^3 + c^3 - 3ab
a) ( x + a) ( x + b) = x^2 + ( a + b )x + ab
Ta có vế trái bằng:
( x + a) ( x + b) = x2+xb+xa+ab= x2+(a+b)x+ab
Vậy vế trái bằng vế phải
ý b tương tự bạn nhé, bạn có thể triển khai vế trái hoặc thu gọn vế phải, cũng có thể triển khai cả hai vế
tick đúng cho mình nha
Chứng minh
a) ( a - b )^2 = ( a + b ) - 4ab. Tính ( a - b )^2009 biết a + b = -3 và ab = 4
b) a^3 + b^3 = ( a + b )^3 - 3ab(a + b ). Tính a^3 + b^3 = biết ab = 5 và a + b = -8
c) a^3 - b^3 = ( a - b )^3 + 3ab( a -b ). Tính a^3 - b^3 biết ab = -4 và a - b = 6
d) x^2 - 2xy + y^2 + 1 > 0 với mọi x và y
e) Tính x + y biết x^3 + y^3 = 91 và x^2 - xy + y^2 = 13
Bài 1. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh a/3a+b= c/3c+d
Bài 2. Cho a/b= c/d. Chứng minh: a. a^2 - b^2/c^2-d^2 = ab/cd
b. (a-b)^2/(c-d)^2 = ab/cd
Bài 3. Tìm x,y biết 2/x=3/y và xy= 96
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\left(\text{Đ}PCM\right)\)
Bài 2:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
Xét \(k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\left(\text{đ}pcm\right)\)
Bài 3:
Ta có:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)
Đặt \(\dfrac{y}{3}=\dfrac{x}{2}=k\)\(\Rightarrow\)y=3k
x=2k
Lại có xy=96
\(\Rightarrow2k3k=96\)
\(\Rightarrow6k^2=96\)
\(\Rightarrow k=\pm4\)
Với \(k=4\Rightarrow\left(x;y\right)=\left(8;12\right)\)
\(k=-4\Rightarrow\left(x;y\right)=\left(-8;-12\right)\)
Vậy ta tìm được 2 cặp x;y thỏa mãn yêu cầu đề bài là:
(x;y)=(8;12)
(x;y)=(-8;-12)
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c
a)a2+b2+c2+3=2(a+b+c)
=>a2+b2+c2+1+1+1-2a-2b-2c=0
=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
=>(a-1)2+(b-1)2+(c-1)2=0
=>a-1=b-1=c-1=0 <=>a=b=c=1
-->Đpcm
b)(a+b+c)2=3(ab+ac+bc)
=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0
=>a2+b2+c2-ab-ac-bc=0
=>2a2+2b2+2c2-2ab-2ac-2bc=0
=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0
=>(a-b)2+(b-c)2+(c-a)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
c)a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
=>2a2+2b2+c2=2ab+2bc+2ca
=>2a2+2b2+c2-2ab-2bc-2ca=0
=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0
=>(a-b)2+(b-c)2+(a-c)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
a) Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\) nên pt trên tương đương với \(\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\) (1)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)
\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Rightarrow a=b=c\)
c) Giải tương tự câu b) , bắt đầu từ (1)
Chứng minh:
(a-b)^2=a^2-2.ab+b^2
a^2-b^2=(a-b).(a+b)
(a+b)^3=a^3+3.a^2b+3.ab^2+b^3
(a-b)^3=a^3-3.a^2b+3.ab^2-b^3
(a-b)2 = (a-b).(a-b)
= a2 - ab - ab + b2
= a2 - 2ab + b2 (đpcm)
Chứng minh :
a, \(\dfrac{a+b+c}{3}\dfrac{>}{ }\sqrt{\dfrac{ab+bc+ca}{3}}\) với a,b,c>0
b,\(\dfrac{a^2+b^2+c^2}{3}\dfrac{>}{ }\left(\dfrac{a+b+c}{3}\right)^2\)
c,\(\dfrac{x^2+2}{\sqrt{x^2+1}}\dfrac{>}{ }2\)
d,\(\dfrac{a^3+b^3}{2}\dfrac{>}{ }\left(\dfrac{a+b}{2}\right)^3\)
a) Ta có:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)
\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)
Đẳng thức xảy ra khi $a=b=c.$
b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),
đúng.
Đẳng thức xảy ra khi $a=b=c.$
c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)
Đẳng thức xảy ra khi $x=0.$
d) Xét hiệu hai vế đi bạn.
Chứng minh:
a, \(a^3+b^3+c^3\dfrac{>}{ }3abc\)
b,\(abc\dfrac{< }{ }\left(\dfrac{a+b+c}{3}\right)^3\)
c,\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\dfrac{< }{ }a+b+c\)
d,\(\dfrac{a}{b+c}+\dfrac{c}{a+b}+\dfrac{b}{a+c}\dfrac{>}{ }\dfrac{3}{2}\left(a,b,c>0\right)\)
cho a+b =1 và ab khác 0. Chứng minh a/b^3-1 + b/a^3-1 =2(ab-2)/a^2.b^2+3