Những câu hỏi liên quan
LH
Xem chi tiết
LL
Xem chi tiết
HM
Xem chi tiết
HM
25 tháng 6 2016 lúc 14:30

Goi da thuc tren la A

Thay a=b -> A= 0 -> A chua nghiem la a-b

Tuong tu b=c-> A = 0 - > A chua nghiem la b -c

Tuong tu c =a - > A = 0 -> A chua nghiem la c-a

=> A = k(a - b)(b - c)(c - a)

Vì A có bậc 3 mà (a - b)(b - c)(c - a) cũng có bậc 3 -> k là 1 số 

Thay a = 3, b= 2, c= 1

=> A= -6=k.1.1..-2

=> k = 3

=> A = 3(a - b)(b - c)(c - a)

Đây gọi là phương pháp giá trị riêng bạn nha!

Bình luận (0)
HM
25 tháng 6 2016 lúc 14:35

x^5 + x + 1

= x^5 - x^2 + (x^2 + x + 1)

= x^2(x^3 - 1) + ( x^2 + x + 1)

= x^2( x - 1)(x^2 + x + 1) + ( x^2 + x + 1)

= (x^3 - x^2 + 1)(x^ 2 + x + 1)

Bình luận (0)
LP
Xem chi tiết
DM
Xem chi tiết
SN
26 tháng 9 2019 lúc 20:01

=2x(y-z) - (y-z)(x+t)

=(2x -x +t).(y-z)

Bình luận (1)
NN
Xem chi tiết
NA
23 tháng 12 2019 lúc 20:04

Ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+xz\left(x+z\right)\)

\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)

\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)

\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)

\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
H24
17 tháng 12 2023 lúc 11:48

\(x^2-2xy+y^2-z^2\\=(x^2-2xy+y^2)-z^2\\=(x-y)^2-z^2\\=(x-y-z)(x-y+z)\)

Bình luận (0)
H24
Xem chi tiết
DN
9 tháng 7 2017 lúc 9:04

Ta có

a,    x2-x-y2-y

=x2-y2-(x+y)

=(x-y)(x+y) - (x+y)

=(x+y)(x-y-1)

b,   x2-2xy+y2-z2

=(x-y)2-z2

=(x-y-z)(x-y+z)

Bình luận (0)
H24
9 tháng 7 2017 lúc 9:11

con bai 32, 33 neu ban tra loi duoc minh h them

Bình luận (0)
H24
9 tháng 7 2017 lúc 9:22

nhanh nha

Bình luận (0)
ND
Xem chi tiết
DQ
14 tháng 10 2018 lúc 15:24

\(x^3+y^3+z^3-3xyz\) \(=\left(x+y\right)^3-3x^2y-3xy^2+z^2-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

HỌC TỐT NHA!

Bình luận (0)
TH
14 tháng 10 2018 lúc 14:31

ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)

Bình luận (0)
DQ
14 tháng 10 2018 lúc 15:28

- Hình như đề của u sai hay sao á :)))

Bình luận (0)