Tính và so sánh:
a) \({( - 3)^2}.{( - 3)^4}\) và \({( - 3)^6}\);
b) \(0,6{}^3:0,{6^2}\) và \(0,{6}\)
Không sử dụng máy tính cầm tay, hãy so sánh:
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
So sánh:
a) \(\sqrt{7}\) + \(\sqrt{3}\) và \(\sqrt{5}\) + \(\sqrt{6}\)
b) \(\sqrt{4-3\sqrt{3}}\) và \(\sqrt{3}\) - 1
b: \(\sqrt{3}-1=\sqrt{4-2\sqrt{3}}\)
mà \(4-3\sqrt{3}< 4-2\sqrt{3}\)
nên \(\sqrt{4-3\sqrt{3}}< \sqrt{3}-1\)
Đề này sai rồi bạn vì \(4-3\sqrt{3}< 0\)
Bài 5:So sánh (không dùng bảng số hay máy tính bỏ túi)
a. 2 và √2+ 1 b. 1 và √3–1 c. 2√31và 10 d. -3.√11và -12
Bài 6 : So sánh
:a/ 15 và √200
b/ 27 và 9 √5
c/ -24 và -6 √15
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
BÀI 1 SO SÁNH:A,11/12 VÀ 23/24 B,3/-20 VÀ -7/12 BÀI 2:2/5-3/4+/12 7/-8-5/12+1/6
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
So sánh:
a) 2 và √3 ; b) 6 và √41 ; c) 7 và √47
a,Ta có:\(2=\sqrt{4}\)
Vì \(\sqrt{4}>\sqrt{3}\)
\(\Rightarrow2>\sqrt{3}\)
b,Ta có:\(6=\sqrt{36}\)
Vì \(\sqrt{36}< \sqrt{41}\)
\(\Rightarrow6< \sqrt{41}\)
c,Ta có:\(7=\sqrt{49}\)
Vì \(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
a) 2 =√4 > √3 ;
b) 6=√36 < √41 ;
c) 7=√49 > √47
Bài 4: So sánh:
a. \(\dfrac{2}{3}\)và\(\dfrac{1}{4}\)
b. \(\dfrac{7}{10}\)và\(\dfrac{7}{8}\)
c. \(\dfrac{6}{7}\)và\(\dfrac{3}{5}\)
d. \(\dfrac{14}{21}\)và\(\dfrac{60}{72}\)
\(a:ta.c\text{ó}:BCNN:12\\ \dfrac{2}{3}=\dfrac{2\cdot4}{3\cdot4}=\dfrac{8}{12};\dfrac{1}{4}=\dfrac{1\cdot3}{4\cdot3}=\dfrac{3}{12}\\ v\text{ì }\dfrac{8}{12}< \dfrac{3}{12}n\text{ê}n\dfrac{2}{3}< \dfrac{1}{4}\\ b:ta.c\text{ó}:\\ 10=2\cdot5\\ 8=2^3\\ \Rightarrow BCNN=2^3\cdot5=8\cdot5=40\\ \dfrac{7}{10}=\dfrac{7\cdot4}{10\cdot4}=\dfrac{28}{40};\dfrac{7}{8}=\dfrac{7\cdot5}{8\cdot5}=\dfrac{35}{40}\\ v\text{ì }\dfrac{28}{40}< \dfrac{35}{40}n\text{ê}n\dfrac{7}{10}< \dfrac{7}{8}\\ c:ta.c\text{ó}:\\ 7=7;5=5\\ \Rightarrow BCNN=7\cdot5=35\\ \dfrac{6}{7}=\dfrac{6\cdot5}{7\cdot5}=\dfrac{30}{35};\dfrac{3}{5}=\dfrac{3\cdot7}{5\cdot7}=\dfrac{21}{35}\\ v\text{ì }\dfrac{30}{35}>\dfrac{21}{35}n\text{ê}n\dfrac{6}{7}>\dfrac{3}{5}\\ d:ta.c\text{ó}:\\ 21=3\cdot7\\ 72=2^3\cdot3^2\\ \Rightarrow BCNN=2^3\cdot3^2\cdot7=504\\ \dfrac{14}{21}=\dfrac{14\cdot24}{21\cdot24}=\dfrac{336}{504};\dfrac{60}{72}=\dfrac{60\cdot7}{72\cdot7}=\dfrac{420}{504}\\ v\text{ì }\dfrac{336}{504}< \dfrac{420}{504}n\text{ê}n\dfrac{14}{21}< \dfrac{60}{72}\)
So sánh:
a) \(C_6^2\) và \(C_6^4\)
b) \(C_4^2 + C_4^3\) và \(C_5^3\)
a) Sử dụng máy tính cầm tay, ta có:
\(\left. \begin{array}{l}C_6^2 = 15\\C_6^4 = 15\end{array} \right\} \Rightarrow C_6^2 = C_6^4\)
b) Sử dụng máy tính cầm tay, ta có:
\(\left. \begin{array}{l}C_4^2 + C_4^3 = 6 + 4 = 10\\C_5^3 = 10\end{array} \right\} \Rightarrow C_4^2 + C_4^3 = C_5^3\)
Bài 4: So sánh:
a,\(2^{333}\) và \(3^{222}\)
b,\(3^{2009}\)và\(9^{1005}\)
a: \(2^{333}=8^{111}< 9^{111}=3^{222}\)
So sánh:
a) \(4\sqrt{7}\) và \(3\sqrt{13}\)
b) \(3\sqrt{12}\) và \(2\sqrt{16}\)
c) \(\dfrac{1}{4}\sqrt{84}\) và \(6\sqrt{\dfrac{1}{7}}\)
d) \(3\sqrt{12}\) và \(2\sqrt{16}\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{17}{2}}\) và \(\dfrac{1}{3}\sqrt{19}\)
a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)
mà 112<117
nên \(4\sqrt{7}< 3\sqrt{13}\)
b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
mà \(\dfrac{21}{4}>\dfrac{36}{7}\)
nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)
d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)