so sánh `5` và `2+\sqrt{11}`
SO SÁNH :
\(\sqrt{2}+\sqrt{11}\) và \(\sqrt{3}+5\)
`@` `\text {Ans}`
`\downarrow`
`\sqrt {2} + \sqrt {11}` và `\sqrt {3} + 5`
Ta có: `5^2 = 25`
`=> \sqrt {25} = 5`
`=> \sqrt {3} + 5 = \sqrt {3} + \sqrt {25}`
Vì: \(\left\{{}\begin{matrix}\sqrt{3}>\sqrt{2}\\\sqrt{25}>\sqrt{11}\end{matrix}\right.\)
`=>`\(\sqrt{3}+\sqrt{25}>\sqrt{2}+\sqrt{11}\)
`=> \sqrt {3} + 5 > \sqrt {2} + \sqrt {11}.`
`# \text {NgMH}`
(căn 2+căn 11)^2=13+2*căn 22
(căn 3+5)^2=28+2*căn 45
mà 13<28; căn 22<căn 45
nên căn 2+căn 11<căn 3+5
so sánh : a) \(\sqrt{2}+\sqrt{11}\) và \(\sqrt{3}+5\)
b) \(\sqrt{21}-\sqrt{5}\) và \(\sqrt{20}-\sqrt{6}\)
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
so sánh
\(\sqrt{2}+\sqrt{11}và\sqrt{3}+\sqrt{5}\)
Đề đúng theo như bn sửa: So sánh: \(\sqrt{2}+\sqrt{11}\)và\(\sqrt{3}+5\)
Ta có: \(\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=2+4=6\)
\(\sqrt{3}+5>\sqrt{1}+5=1+5=6\)
=> \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(\sqrt{2}\) + \(\sqrt{11}\) và \(\sqrt{3}\) + 5
Ta có: \(\sqrt{3}\) + 5 = \(\sqrt{3}\) + \(\sqrt{25}\)
Ta thấy: 2 + 11 < 3 +25 hay \(\sqrt{2}\) + \(\sqrt{11}\) < \(\sqrt{3}\) + \(\sqrt{25}\)
\(\Rightarrow\) \(\sqrt{2}\) + \(\sqrt{11}\) < \(\sqrt{3}\) + 5
mk chép nhầm đề 5 thành \(\sqrt{5}\)
Bài 1: So sánh các căn bậc hai số học
a) 1 và\(\sqrt{3}-1\) b) 2 và \(\sqrt{2}+1\) c) 2\(\sqrt{31}\)và 10 d)\(\sqrt{2}+\sqrt{11}\)và \(\sqrt{3}+5\)
So sánh
a) 5 và \(\sqrt{11}\)
b) \(\sqrt{13}\) và 4
c) -7 và -\(\sqrt{43}\)
d) -\(\sqrt{21}\) và -5
Mình chọn nhầm lớp 8 chứ thật ra câu hỏi ở bên lớp 9
a) Ta có \(5=\sqrt{25}\)
Vì \(\sqrt{25}>\sqrt{11}\) nên \(5>\sqrt{11}\)
b) Ta có \(4=\sqrt{16}\)
Vì \(\sqrt{13}< \sqrt{16}\) nên \(\sqrt{13}< 4\)
c) Ta có \(-7=-\sqrt{49}\)
Vì \(-\sqrt{49}< -\sqrt{43}\) nên \(-7< -\sqrt{43}\)
d) Ta có \(-5=-\sqrt{25}\)
Vì \(-\sqrt{21}>-\sqrt{25}\) nên \(-\sqrt{21}>-5\)
So sánh
a) 2 và 1+\(\sqrt{2}\)
b) 4 và 1+\(\sqrt{3}\)
c) -2\(\sqrt{11}\) và -10
d) 3\(\sqrt{11}\) và 12
a)
Có: \(2>1>0\)
\(\Rightarrow\sqrt{2}>1\Rightarrow1+\sqrt{2}>1+1\\ \Leftrightarrow1+\sqrt{2}>2\)
b) Có: \(0< \sqrt{3}< 3\)
\(\Rightarrow3+1>\sqrt{3}+1\\ \Rightarrow4>\sqrt{3}+1\)
c) Có: \(0< \sqrt{11}< \sqrt{25}\left(0< 11< 25\right)\)
\(\Rightarrow\sqrt{11}< 5\\ \Rightarrow-2\sqrt{11}>-2.5=-10\left(-2< 0\right)\)
d) Có: \(0< \sqrt{11}< \sqrt{16}=4\left(do.0< 11< 16\right)\)
\(\Rightarrow3\sqrt{11}< 3.4\\ \Leftrightarrow3\sqrt{11}< 12\)
a: 2=1+1<1+căn 2
b: 4=1+3>1+căn 3
c: -2căn 11=-căn 44
-10=-căn 100
mà 44<100
nên -2 căn 11>-10
d: 12=3*4=3*căn 16>3*căn 11
so sánh
2 và \(\sqrt{2}\)+ 1
2\(\sqrt{31}\)và 10
\(-3\sqrt{11}\)và - \(\sqrt{12}\)
a: \(1< \sqrt{2}\)
nên \(2< \sqrt{2}+1\)
b: \(2\sqrt{31}=\sqrt{124}\)
\(10=\sqrt{100}\)
mà 124>100
nên \(2\sqrt{31}>10\)
c: \(-3\sqrt{11}=-\sqrt{99}\)
\(-\sqrt{12}=-\sqrt{12}\)
mà 99>12
nên \(-3\sqrt{11}< -\sqrt{12}\)
so sánh
a,\(\sqrt{2}+\sqrt{11}\) và 5+\(\sqrt{3}\)\
b,\(\sqrt{8}+\sqrt{11}\)và \(\sqrt{38}\)
a: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
b: \(\left(\sqrt{8}+\sqrt{11}\right)^2=19+2\cdot\sqrt{88}=19+\sqrt{352}\)
\(\left(\sqrt{38}\right)^2=19+19=19+\sqrt{361}\)
mà 352<361
nên \(\sqrt{8}+\sqrt{11}< \sqrt{38}\)
So sánh ( không dùng bảng số hay máy tính bỏ túi)
a) 6 + 2$\sqrt{2}$ và 9
b) $\sqrt{2}+\sqrt{3}$ và 3
c) 9 + 4$\sqrt{5}$ và 16
d) $\sqrt{11}-\sqrt{3}$ và 2
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)