giải pt
\(\left(4x-5\right)^2\left(2x-3\right)\left(x-1\right)=9\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Giải Pt : \(\left(4x-5\right)^2\left(2x-3\right)\left(x-1\right)=9\)
\(\left(4x-5\right)^2\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\left(4x-5\right)^2\left(2x-3\right).2.\left(x-1\right).4=9.2.4\)
\(\Leftrightarrow\left(4x-5\right)^2\left(4x-6\right)\left(4x-4\right)=72\)(1)
Đặt \(4x-5=a\)
Khi đó (1) trở thành:
\(a^2\left(a-1\right)\left(a+1\right)=72\)
\(\Leftrightarrow a^2\left(a^2-1\right)=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow a^4-9a^2+8a^2-72=0\)
\(\Leftrightarrow a^2\left(a^2-9\right)+8\left(a^2-9\right)=0\)
\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0\)
\(\Leftrightarrow a^2-9=0\) (vì \(a^2+8>0\forall a\) )
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
- Với \(a=3\Rightarrow4x-5=3\Rightarrow x=2\)
-Với \(a=-3\Rightarrow4x-5=-3\Rightarrow x=\frac{1}{2}\)
Vậy \(x=2,x=\frac{1}{2}\)
Chúc bạn học tốt.
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
a, tìm m để pt \(x^2+2x+m-3=0\) có 2 no phân biệt
b, giải pt: \(\sqrt{\left(9-4x\right)\left(x^2-6x+9\right)}=\left|-2x+5\right|\sqrt{9-4x}\)
a, Ta có: \(\Delta'=1-m+3=4-m\)
Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow4-m>0\Leftrightarrow m< 4\)
b, ĐXXĐ: \(x\le\frac{9}{4}\)
\(pt\Leftrightarrow\sqrt{\left(9-4x\right)\left(x-3\right)^2}=\left|-2x+5\right|\sqrt{9-4x}\)
\(\Leftrightarrow\sqrt{9-4x}\left(\left|x-3\right|-\left|-2x+5\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\\left|x-3\right|=\left|-2x+5\right|\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\x-3=-2x+5\\x-3=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{4}\\x=\frac{8}{3}\left(l\right)\\x=2\end{matrix}\right.\)
Vậy pt đã cho có 2 nghiệm \(x=2;x=\frac{9}{4}\)
giải pt
a) \(\left|2x-1\right|=x+3\)
b) \(\left|4x+7\right|=2x+5\)
c) \(\left|2x^2-3x-5\right|=5x-5\)
d) \(\left|x^2-4x-5\right|=4x-17\)
e) \(\left|x-2\right|=3x^2-x-2\)
f) \(\left|4x+1\right|=x^2+2x-4\)
g) \(\sqrt{x^2+6x+9}=\left|2x-1\right|\)
a/ \(x\ge-3\)
\(\Leftrightarrow\left(2x-1\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow3x^2-10x-8=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)
b/ \(x\ge-\frac{5}{2}\)
\(\Leftrightarrow\left(4x+7\right)^2=\left(2x+5\right)^2\)
\(\Leftrightarrow x^2+3x+2=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
c/ \(x\ge1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-5=5x-5\\2x^2-3x-5=5-5x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-8x=0\\2x^2+2x-10=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=4\\x=\frac{-1+\sqrt{21}}{2}\\x=\frac{-1-\sqrt{21}}{2}\left(l\right)\end{matrix}\right.\)
d/ \(x\ge\frac{17}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=4x-17\\x^2-4x-5=17-4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+12=0\\x^2=22\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\left(l\right)\\x=\sqrt{22}\\x=-\sqrt{22}\left(l\right)\end{matrix}\right.\)
e/ \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-x-2=x-2\\3x^2-x-2=2-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=0\\3x^2=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=\frac{2}{3}\left(l\right)\\x=\frac{2\sqrt{3}}{3}\\x=\frac{-2\sqrt{3}}{3}\end{matrix}\right.\)
f/
- Với \(x\ge-\frac{1}{4}\) pt tương đương:
\(x^2+2x-4=4x+1\)
\(\Leftrightarrow x^2-2x-5=0\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{6}\\x=1-\sqrt{6}\left(l\right)\end{matrix}\right.\)
- Với \(x< -\frac{1}{4}\) pt tương đương:
\(-4x-1=x^2+2x-4\)
\(\Leftrightarrow x^2+6x-3=0\Rightarrow\left[{}\begin{matrix}x=-3+2\sqrt{3}\left(l\right)\\x=-3-2\sqrt{3}\end{matrix}\right.\)
f/ \(\Leftrightarrow x^2+6x+9=\left(2x-1\right)^2\)
\(\Leftrightarrow3x^2-10x-8=0\Rightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\end{matrix}\right.\)
Giải các PT sau:
a)\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
b)\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
c)\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
Làm cho bạn 1 con thôi dài quá trôi hết màn hình:
c) có vẻ khó nhất (con khác tương tự)
đặt 2x+2=t=> x+1=t/2
\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)
\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)
<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)
Mọi người dành thời gian giải hộ mình bài toán với:
B2: Giải các PT sau:
d) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x+1\right)\left(7x-10\right)\)
e) \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
f) \(x\left(2x-7\right)-4x+14=0\)
g) \(3x-15=2x\left(x-5\right)\)
h) \(\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)
i) \(0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)
j) \(\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)
k) \(x\left(2x-9\right)=3x\left(x-5\right)\)
Các Pro giải giúp mik với :(
e sẽ cố gắng !!!
\(3x-15=2x\left(x-5\right)\)
\(3x-15=2x^2-10x\)
\(3x-15-2x^2+10x=0\)
\(13x-15-2x^2=0\)
\(x\left(13-2x\right)-15=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\13-2x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\-2-2x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\2x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(f,x\left(2x-7\right)-4x+14=0\)
\(2x^2-7x-4x+14=0\)
\(2x^2-11x+14=0\)
\(x\left(2x-11\right)=-14\)
\(\Rightarrow\orbr{\begin{cases}x=-14\\2x-11=-14\end{cases}\Rightarrow\orbr{\begin{cases}x=-14\\2x=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=-14\\x=-\frac{3}{2}\end{cases}}}\)
\(e,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(3x+36-8x=x^2+4x+4\)
\(-5x+36-x^2-4x-4=0\)
\(-9x+32-x^2=0\)
\(x\left(-9-x\right)+32=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\23-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=23\end{cases}}}\)
chúc cj hay a hc tốt