Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VI
Xem chi tiết
VI
28 tháng 9 2019 lúc 23:11

Sorry thiếu với \(\forall m\inℝ\)

Bình luận (0)
VI
28 tháng 9 2019 lúc 23:15

với cả  : P(x) = ax2 + bx +c , a khác 0

Bình luận (0)
HN
Xem chi tiết
DT
Xem chi tiết
NT
30 tháng 3 2021 lúc 20:35

Ta có: \(A=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(=1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)\)

\(=\dfrac{2009}{1}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}\)

\(=2009\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2008}\right)\)

Bình luận (1)
H24
Xem chi tiết
LT
Xem chi tiết
NT
23 tháng 1 2022 lúc 11:48

\(=\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)

\(=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2009}\right)\)

Bình luận (2)
DP
Xem chi tiết
AH
15 tháng 11 2017 lúc 23:17

Lời giải:

Đặt \(t=\frac{a_1}{a_2}=\frac{a_2}{a_3}.....=\frac{a_{2008}}{a_1}\)

Theo tính chất dãy tỉ số bằng nhau:

\(t=\frac{a_1+a_2+....+a_{2008}}{a_2+2_3+...+a_{2008}+a_1}=\frac{a_1+a_2+...+a_{2008}}{a_1+a_2+...+a_{2008}}=1\)

Do đó:

\(\left\{\begin{matrix} a_1=a_2\\ a_2=a_3\\ .....\\ a_{2007}=a_{2008}\\ a_{2008}=a_1\end{matrix}\right.\) \(\Leftrightarrow a_1=a_2=....=a_{2007}=a_{2008}=k\)

Khi đó:

\(N=\frac{a_1^2+a_2^2+...+a^2_{2007}+a^2_{2008}}{(a_1+a_2+...+a_{2008})^2}=\frac{\underbrace{k^2+k^2+....+k^2}_{2008}}{\underbrace{(k+k+....+k)^2}_{2008}}\)

\(\Leftrightarrow N=\frac{2008k^2}{(2008k)^2}=\frac{1}{2008}\)

Vậy \(N=\frac{1}{2008}\)

Bình luận (0)
LY
Xem chi tiết
ph
Xem chi tiết
NT
24 tháng 1 2023 lúc 15:12

\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)

\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)

\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)

Bình luận (0)
PC
Xem chi tiết