Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NA

Tính giá trị biểu thức E = \(\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)

ND
14 tháng 9 2023 lúc 22:17

Trước tiên ta cần chứng minh : \(1^2+n^2+\dfrac{n^2}{\left(n+1\right)^2}\text{=}\left(n+1-\dfrac{n}{n+1}\right)^2\)

\(\Leftrightarrow2.\left(\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n}{n+1}-\dfrac{n^2}{n+1}\right)\text{=}0\)

\(\Leftrightarrow2.0\text{=}0\left(LĐ\right)\)

Ta có : \(E\text{=}\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)

Với bổ đề trên thì :

\(E\text{=}\sqrt{\left(2007+1-\dfrac{2007}{2008}\right)^2}+\dfrac{2007}{2008}\)

\(E\text{=}2008+\dfrac{2007}{2008}-\dfrac{2007}{2008}\)

\(E\text{=}2008\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
H24
Xem chi tiết
PC
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết
NK
Xem chi tiết
HD
Xem chi tiết
NA
Xem chi tiết
NS
Xem chi tiết