Những câu hỏi liên quan
NN
Xem chi tiết
TN
14 tháng 5 2020 lúc 20:29

\(A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}⋮11\)

\(A=\frac{11}{22}+\frac{11}{33}+...+\frac{11}{99}⋮11\)

\(A=11.\left(\frac{1}{22}+\frac{1}{33}+...+\frac{1}{99}\right)⋮11\)

\(\Rightarrow A⋮11\)(vì tổng A có thể tách thành một tích nhân với 11)

(mình làm sai nhớ đừng ném đá mình)

Bình luận (0)
 Khách vãng lai đã xóa
TN
14 tháng 5 2020 lúc 20:31

chỗ tổng A có thể tách ... bạn nhớ sửa là tổng A có thể tách thành một tích có thừa số 11 nhé bạn

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NM
8 tháng 9 2021 lúc 14:43

\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)

Bình luận (0)
NT
8 tháng 9 2021 lúc 14:42

Bài 1: 

a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)

\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)

\(\Leftrightarrow4x=8\)

hay x=2

b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)

\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)

\(\Leftrightarrow16x^3-8x^2+7x^3=15\)

\(\Leftrightarrow23x^3-8x^2-15=0\)

\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)

\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Bình luận (0)
NT
8 tháng 9 2021 lúc 14:43

Bài 2:

a: Ta có: \(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

=3

b: ta có: \(Q=x\left(2x^2-4x+8\right)+12x^2\left(\dfrac{1}{3}-\dfrac{1}{6}x\right)-8x+9\)

\(=2x^3-4x^2+8x+4x^2-2x^3-8x+9\)

=9

Bình luận (0)
QD
Xem chi tiết
DG
Xem chi tiết
NT
Xem chi tiết
LD
26 tháng 4 2016 lúc 19:34

Ta có:

        1/2^2 < 1/1.2

        1/3^2 < 1/2.3

         1/4^2< 1/3.4

     ........................

         1/8^2<1/7.8

 Vậy B < 1/1.2+1/2.3+1/3.4+....+1/7.8

B< 1-1/8

B<7.8<1

=> B<1     

Bình luận (0)
H24
Xem chi tiết
N8
21 tháng 3 2017 lúc 21:32

anh ê chơi thâm vừa thôi à nha

Bình luận (0)
N8
21 tháng 3 2017 lúc 21:50

AK EM BẢO ANH NÈ EM NHỜ ANH CHỨ KO PHẢI EM TRẢ LỜI HỘ ANH

Bình luận (0)
HN
Xem chi tiết
HQ
28 tháng 4 2017 lúc 20:04

Giải:

Dễ thấy:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(.................\)

\(\dfrac{1}{8^2}=\dfrac{1}{8.8}< \dfrac{1}{7.8}\)

Cộng vế theo vế ta được:

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{7.8}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(=1-\dfrac{1}{8}=\dfrac{7}{8}< 1\)

Vậy \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{8^2}< 1\) (Đpcm)

Bình luận (3)
H24
28 tháng 4 2017 lúc 20:24

Ta có:

\(\dfrac{1}{2^2}< \dfrac{1}{1.2},\dfrac{1}{3^2}< \dfrac{1}{2.3},...,\dfrac{1}{8^2}< \dfrac{1}{7.8}\)

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B< 1-\dfrac{1}{8}=\dfrac{7}{8}\)

\(\Rightarrow B< 1\)

Bình luận (1)
LL
Xem chi tiết
H24
23 tháng 6 2020 lúc 19:28

\(B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=\frac{2-1}{1.2}+......+\frac{8-7}{7.8}\)

\(=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{8}=1-\frac{1}{8}< 1\)

ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
.
23 tháng 6 2020 lúc 19:33

Ta có : 1/2^2 < 1/1.2

             1/3^2 < 1/2.3

             1/4^2 < 1/3.4

              ...

              1/8^2 < 1/7.8

=> B < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/7.8

B < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/7 - 1/8

B < 1 - 1/8 < 1

=> B < 1 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
TL
23 tháng 6 2020 lúc 20:15

Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};....;\frac{1}{8^2}< \frac{1}{7\cdot8}\)

\(\Rightarrow B< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}< 1\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NB
Xem chi tiết
DH
2 tháng 5 2021 lúc 22:18

Ta có 

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

...............

\(\dfrac{1}{8^2}< \dfrac{1}{7.8}\)

=> B < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{7.8}\)

B < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

B < \(1-\dfrac{1}{8}< 1\) (Do \(\dfrac{1}{8}>0\))

Vậy.....

 

Bình luận (0)