Tính chính xác dưới dạng phân số:
B=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\)
tính A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+......+\frac{1}{2015.2016.2017}\)
Tính
a) K =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2015.2016.2017}\)
b) O = \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{2015.2016.2017.2018}\)
Tìm x : \(\left(1.2.3+2.3.4+...+2015.2016.2017\right)-\left(5.6+6.7+...+99.100\right)\) \(=\left(5+10+15+...+2000\right)-\frac{1}{1.3}-\frac{1}{3.5}-...-\frac{1}{97.99}-4x\)
chứng minh rằng
\(\frac{2}{n.\left(n+1\right).\left(n+2\right)}=\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
áp dụng tính
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+..............+\frac{1}{2015.2016.2017}\)
Ta có \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) (đpcm)
Áp dụng công thức trên ta có
A\(=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot\cdot\cdot\cdot\cdot+\frac{1}{2015\cdot2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2015\cdot2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{2}{3\cdot4}+....+\frac{1}{2015\cdot2016}-\frac{1}{2016\cdot2017}\)
\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\)
\(\Rightarrow A=\left(\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\right)\div2\approx0.25\)
Vậy A\(\approx0.25\)
chứng minh rằng
\(\frac{2}{n.\left(n+1\right).\left(n+2\right)}=\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)
áp dụng tính
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.............+\frac{1}{2015.2016.2017}\)
Cho biểu thức A = \(\frac{1}{1.2.3}\) + \(\frac{1}{2.3.4}\) + \(\frac{1}{3.4.5}\) +............+ \(\frac{1}{2015.2016.2017}\) . So sánh A và \(\frac{1}{4}\)
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2015.2016.2017}\)
\(\Leftrightarrow\)A=\(\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}-\frac{2}{2017}\)
\(\Leftrightarrow\)A=\(\frac{1}{1}-\frac{1}{2017}\)
\(\Leftrightarrow\)A=\(\frac{2016}{2017}\)
mk quên:Có \(\frac{2016}{2017}< \frac{1}{4}\) \(\Rightarrow\)S<\(\frac{1}{4}\)
Từ kết quả của các bài trên,ta nhận thấy :
\(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}=\frac{3-1}{1\cdot2\cdot3}=\frac{2}{1\cdot2\cdot3}\)
\(\frac{1}{2\cdot3}-\frac{1}{3\cdot4}=\frac{4-2}{2\cdot3\cdot4}=\frac{2}{2\cdot3\cdot4}\)
Vậy : \(\frac{1}{1\cdot2\cdot3}=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}\right];\frac{1}{2\cdot3\cdot4}=\frac{1}{2}\left[\frac{1}{2\cdot3}-\frac{1}{3\cdot4}\right];...\)
\(\frac{1}{2015\cdot2016\cdot2017}=\frac{1}{2}\left[\frac{1}{2015\cdot2016}-\frac{1}{2016\cdot2017}\right]\)
Cộng các số hạng của vế trái và các số hạng của vế phải ta được :
\(A=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}\right]+\frac{1}{2}\left[\frac{1}{2\cdot3}-\frac{1}{3\cdot4}\right]+...+\frac{1}{2}\left[\frac{1}{2015\cdot2016}-\frac{1}{2016\cdot2017}\right]\)
\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}-\frac{1}{2016\cdot2017}\right]\)
\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\right]=\frac{1}{2}\left[\frac{1}{2}-\frac{1}{2016\cdot2017}\right]=...\)
Tính nốt và so sánh -_-
A=\(\frac{3}{1.2.3}\)+ \(\frac{3}{2.3.4}\)+\(\frac{3}{3.4.5}\)+ ... +\(\frac{3}{2015.2016.2017}\). So sánh A với 1.
Giúp mình gấp bài toán này nhé
* Công thức : \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)
\(A=\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{2015.2016.2017}\)
\(\Rightarrow A=3.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{2}-\frac{1}{4066272}\right)\)
\(\Rightarrow A=3.\left(\frac{2033136}{4066272}-\frac{1}{4066272}\right)\)
\(\Rightarrow A=3.\frac{2033135}{4066272}>3.\frac{1355424}{4066272}\)
\(\Rightarrow A>3.\frac{1}{3}\)
\(\Rightarrow A>1\)
Chúc bạn học tốt !!!
Tính:\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2018.2019.2020}.\)
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{2018\cdot2019\cdot2020}\)
\(=\frac{1}{2}\left[\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{2018\cdot2019\cdot2020}\right]\)
\(=\frac{1}{2}\left[\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right]\)
Đến đây tự tính được rồi:v
Đặt tổng trên là A
Ta có:
\(2A=2\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\right)\)
\(=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2018\cdot2019\cdot2020}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\)
\(=\frac{1}{2}-\frac{1}{2019\cdot2020}\)
\(A=\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\div2\)
*Làm tiếp*
\(#Louis\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2018.2019.2020}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2018.2019.2020}\)
Thấy : \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
Áp dụng :
+ Với n = 1 có : \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)
+ Với n = 2 có : \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)
....
+ Với n = 2019 có : \(\frac{2}{2018.2019.2020}=\frac{1}{2018.2019}-\frac{1}{2019.2020}\)
Cộng từng vế có :
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2018.2019}-\frac{1}{2019.2020}\)
\(2A=\frac{1}{2}-\frac{1}{2019.2020}\)
\(A=\left(\frac{1}{2}-\frac{1}{2019.2020}\right):2\)
\(A=\left(\frac{1}{2}-\frac{1}{2019.2020}\right).\frac{1}{2}\)
\(A=\frac{1}{4}-\frac{1}{2019.2020.2}\)
Đến đây tắc dồi >:
Tính : \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
Mình không chép đề bài nhé :
Gọi biểu thức là A :
Ta có : 2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
=\(\frac{1}{1.2}-\frac{1}{49.50}\)( Rút gọn đi ta được cái này )
=1/2 - 1/2450
Vậy A = (1/2 - 1/2450):2