Giải các phương trình sau:
a) \(\dfrac{{5x - 3}}{4} = \dfrac{{x + 2}}{3}\);
Giải các phương trình sau:
a) \(15 - 4x = x - 5\); b) \(\dfrac{{5x + 2}}{4} + \dfrac{{3x - 2}}{3} = \dfrac{3}{2}\).
a) \(15 - 4x = x - 5\)
\( - 4x - x = - 5 - 15\) (chuyển vế)
\( - 5x = - 20\)
\(x = \left( { - 20} \right):\left( { - 5} \right)\) (chia cho một số)
\(x = 4\)
Vậy phương trình có nghiệm \(x = 4\).
b) \(\dfrac{{5x + 2}}{4} + \dfrac{{3x - 2}}{3} = \dfrac{3}{2}\)
\(\dfrac{{\left( {5x + 2} \right).3}}{{4.3}} + \dfrac{{\left( {3x - 2} \right).4}}{{3.4}} = \dfrac{{3.6}}{{2.6}}\) (quy đồng mẫu số)
\(\dfrac{{15x + 6}}{{12}} + \dfrac{{12x - 8}}{{12}} = \dfrac{{18}}{{12}}\)
\(15x + 6 + 12x - 8 = 18\) (chia cả hai vế cho một số)
\(15x + 12x = 18 - 6 + 8\) (chuyển vế)
\(27x = 20\) (rút gọn)
\(x = 20:27\) (chia cả hai vế co một số)
\(x = \dfrac{{20}}{{27}}\)
Vậy phương trình có nghiệm \(x = \dfrac{{20}}{{27}}\).
Giải các phương trình sau:
a) \(\dfrac{3}{x-7}+\dfrac{2}{x+7}=\dfrac{5}{x^2-49}\)
b) \(\dfrac{2x-1}{3}-\dfrac{x+3}{2}>1+\dfrac{5x}{6}\)
a) \(\dfrac{3}{x-7}+\dfrac{2}{x+7}=\dfrac{5}{x^2-49}\)
(ĐKXĐ: x khác 7; x khác -7)
<=>\(\dfrac{3.\left(x+7\right)}{\left(x-7\right).\left(x+7\right)}+\dfrac{2.\left(x-7\right)}{\left(x+7\right).\left(x-7\right)}=\dfrac{5}{\left(x+7\right).\left(x-7\right)}\)
=> 3x + 21 + 2x - 14 = 5
<=> 3x + 2x = 5 + 14 - 21
<=> 5x = -2
<=> x = \(\dfrac{-2}{5}\)
Vậy S = { \(\dfrac{-2}{5}\) }
b) \(\dfrac{2x-1}{3}-\dfrac{x+3}{2}>1+\dfrac{5x}{6}\)
<=> \(\dfrac{2.\left(2x-1\right)}{3.2}-\dfrac{3.\left(x+3\right)}{3.2}>\dfrac{1.6}{6}+\dfrac{5x}{6}\)
=> 4x - 2 - 3x - 9 > 6 + 5x
<=> 4x - 3x - 5x > 6 + 9 + 2
<=> -4x > 17
<=> \(\dfrac{-17}{4}\)
Vậy S = { \(\dfrac{-17}{4}\) }
Giải các phương trình sau:
a) \(5x - 30 = 0\);
b) \(4 - 3x = 11\);
c) \(3x + x + 20 = 0\);
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\).
a) \(5x - 30 = 0\)
\(5x = 0 + 30\)
\(5x = 30\)
\(x = 30:5\)
\(x = 6\)
Vậy phương trình có nghiệm \(x = 6\).
b) \(4 - 3x = 11\)
\( - 3x = 11 - 4\)
\( - 3x = 7\)
\(x = \left( { 7} \right):\left( { - 3} \right)\)
\(x = \dfrac{-7}{3}\)
Vậy phương trình có nghiệm \(x = \dfrac{7}{3}\).
c) \(3x + x + 20 = 0\)
\(4x + 20 = 0\)
\(4x = 0 - 20\)
\(4x = - 20\)
\(x = \left( { - 20} \right):4\)
\(x = - 5\)
Vậy phương trình có nghiệm \(x = - 5\).
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\)
\(\dfrac{1}{3}x - x = 2 - \dfrac{1}{2}\)
\(\dfrac{{ - 2}}{3}x = \dfrac{3}{2}\)
\(x = \dfrac{3}{2}:\left( {\dfrac{{ - 2}}{3}} \right)\)
\(x = \dfrac{{ - 9}}{4}\)
Vậy phương trình có nghiệm \(x = \dfrac{{ - 9}}{4}\).
Giải các phương trình sau:
a) 2,3 - 2(0,7 + 2) = 3,6 - 1,7x
b) \(\dfrac{5x+7}{4}-\dfrac{3x+5}{8}=\dfrac{4x+9}{5}-\dfrac{x-9}{3}\)
c) \(\dfrac{2x-1}{4}+\dfrac{x-3}{3}=\dfrac{4x-2}{3}-\dfrac{6x+7}{12}\)
d) (x - 1)(x + 2) - x(x + 3) = 8
a: =>3,6-1,7x=2,3-1,4-4=0,9-4=-3,1
=>1,7x=6,7
hay x=67/17
b: \(\Leftrightarrow30\left(5x+4\right)-15\left(3x+5\right)=24\left(4x+9\right)-40\left(x-9\right)\)
=>150x+120-45x-75=96x+216-40x+360
=>105x+45=56x+576
=>49x=531
hay x=531/49
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
Bài 2: Giải các phương phương trình sau:
a) \(\dfrac{3\left(x-3\right)}{4}\)+\(\dfrac{4x-10,5}{4}\)=\(\dfrac{3\left(x+1\right)}{5}\)+6
b) \(\dfrac{2\left(3x+1\right)+1}{4}\)-5=\(\dfrac{2\left(3x-1\right)}{5}\)-\(\dfrac{3x+2}{10}\)
Mik đang cần gấp nha!!❤
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
<=> 6.6 - 0.9x = 2,6 + 0,1x - 4
<=> - 0.9x - 0,1x = -6.6 -1,4
<=> -x = -8
<=> x = 8
Vậy x = 8
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
<=> 3,6 - x - 0,5 = x - 5,5 + x
<=> - x - 3,1 = -5,5
<=> - x = -2.4
<=> x = 2.4
Vậy x = 2.4
Giải các phương trình sau:
a, |1 - x| - |x + 1| = 2x
b, x2 - |x - 1| = x(x - 4) + 3
c, x + \(\dfrac{\left|5x-2\right|}{4}\)= 2 - \(\dfrac{x+3}{6}\)
d, |x + 1| + |x + 2| + |2x + 5| = x - 3
Giải các phương trình sau:
a) \(\sqrt{25x^2-9}-2\sqrt{5x+3}=0\)
b) \(\dfrac{\sqrt{x-3}}{\sqrt{2x+1}}=2\)
c) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)
`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`
`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\)
`b)sqrt{x-3}/sqrt{2x+1}=2`
ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)
`<=>x>=3`
`pt<=>sqrt{x-3}=2sqrt{2x+1}`
`<=>x-3=8x+4`
`<=>7x=7`
`<=>x=1(l)`
`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`
`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`
`<=>|x-1|+|x-2|=3`
`**x>=2`
`pt<=>x-1+x-2=3`
`<=>2x=6`
`<=>x=3(tm)`
`**x<=1`
`pt<=>1-x+2-x=3`
`<=>3-x=3`
`<=>x=0(tm)`
`**1<=x<=2`
`pt<=>x-1+2-x=3`
`<=>=-1=3` vô lý
Vậy `S={0,3}`
Giải các phương trình sau:
a.{\(\dfrac{3x+1}{2}-\dfrac{y-2}{3}=4\)
{\(\dfrac{x-2}{3}+\dfrac{y+1}{4}=5\)
b.{(x + 5) (y - 4) = xy
{(x + 5) (y + 12) = xy
b: Ta có: \(\left\{{}\begin{matrix}\left(x+5\right)\left(y-4\right)=xy\\\left(x+5\right)\left(y+12\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-4x+5y-20-xy=0\\xy+12x+5y+60-xy=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+5y=20\\12x+5y=-60\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-16y=80\\-4x+5y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-5\\-4x=20-5y=20-5\cdot\left(-5\right)=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-5\\x=-\dfrac{45}{4}\end{matrix}\right.\)
Giải các phương trình sau:
a) \(\dfrac{1}{2x-6}+\dfrac{3x-10}{x^2-4x+3}=\dfrac{7}{2}\)
b) \(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(a.ĐK:x\ne3;1\)
\(\Rightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)+2\left(3x-10\right)}{2\left(x-1\right)\left(x-3\right)}=\dfrac{7\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow x-1+6x-20=7\left(x^2-4x+3\right)\)
\(\Leftrightarrow7x-21=7x^2-28x+21\)
\(\Leftrightarrow7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
b.\(ĐK:x\ne2;4\)
\(\Rightarrow\dfrac{x-1}{x-2}-\dfrac{x+3}{4-x}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(4-x\right)}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow4x-x^2-4+x-x^2+2x-3x+6-2=0\)
\(\Leftrightarrow-2x^2+4x=0\)
\(\Leftrightarrow-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
a: \(\Leftrightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow7\left(x^2-4x+3\right)=x-1+6x-20=7x-21\)
\(\Leftrightarrow\left(x-3\right)\left(7x-7\right)-7\left(x-3\right)=0\)
=>(x-3)(7x-14)=0
=>x=3(loại) hoặc x=2(nhận)
b: \(\Leftrightarrow\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)=-2\)
\(\Leftrightarrow x^2-5x+4+x^2+x-6=-2\)
\(\Leftrightarrow2x^2-4x=0\)
=>2x(x-2)=0
=>x=0(nhận) hoặc x=2(loại)