Tìm x,y thuộc Z biết: x^3+2018x=2020^2019+4
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
Tìm x,y thuộc Z biết :2020^x+2018y=2019
Tìm x,y,z thuộc Z biết:
(x-y)^3 + (y-2)^2 + (z-2) = 2019^2020
Tìm x;y;z thuộc N biết:
2018x + 2019y = 2020z
tìm x,y thuộc Z biết
a)25-y2=8(x-2019)2
b)|2018-x|+|2019-x|+|2020-x|=2
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
c) Tìm các số nguyên dương x, y, z biết: (x – y)3 + (y – z)2 + 2017 |x- z| = 2019^2020
Tìm x ,y, z biết: x-y=2018; y-z = -2019; z+x= 2020
. Tìm x ,y, z biết: x-y=2018; y-z = -2019; z+x= 2020
Tìm x thuộc Z,biết
A)4.(x mũ 2 +1)=0
B) - 2018.(x + 2019)= 0 mũ 2020
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1
b ) - 2018 . ( X + 2019 ) = 02020
- 2018 . ( x + 2019 ) = 0
x + 2019 = 0 : ( - 2018 )
x + 2019 = 0
x = 0 - 2019
x = - 2019
Vậy x = - 2019