Tìm GTLN của biểu thức sau:
P=4-x^2+1
Tìm GTLN của biểu thức: 2x^2/x^4+x^2+1
\(A=\dfrac{2x^2}{x^4+x^2+1}=\dfrac{6x^2}{3\left(x^4+x^2+1\right)}=\dfrac{2\left(x^4+x^2+1\right)-2x^4+4x^2-2}{3\left(x^4+x^2+1\right)}\)
\(A=\dfrac{2}{3}-\dfrac{2\left(x^2-1\right)^2}{3\left(x^4+x^2+1\right)}\le\dfrac{2}{3}\)
\(A_{max}=\dfrac{2}{3}\) khi \(x^2=1\)
Tìm GTLN, GTNN của các biểu thức sau và tìm điều kiện của x để biểu thức có GTLN, GTNN:
C=/x+1/+/x+2/+/x+3/+/x+4/+/x+5/
D=/x-1/+/x-2/+/x-3/+....+ /x-2017/
Giúp mk nha !
tìm GTLN và GTNN của biểu thức M=(x^2+x+1)/x^2+4
Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?
Tìm x để biểu thức M=3/(2x^2-3x+4) đạt GTLN. Khi đó hãy tìm GTLN của biểu thức M.
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm nghiệm của đa thức sau:
P(x)= x2(2 - 3x)
Đặt P(x)=0
=>x2(-3x+2)=0
=>x=0 hoặc x=2/3
\(P\left(x\right)=x^2\cdot\left(2-3x\right)\)
Đặt \(P\left(x\right)=0\)
\(x^2\left(2-3x\right)=0\)
\(\Rightarrow\)\(-3x^3+2x^2=0\)
\(\Rightarrow\)\(x^2\left(-3x+2\right)=0\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x^2=0\\-3x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức \(P\left(x\right)\) là \(x=\left\{0;\dfrac{2}{3}\right\}\)
tìm GTLN của biểu thức A=(5x^2+4x-1)/x^2
Tìm GTLN của B= x^2/(x^2+x+1)
\(A=\frac{5x^2+4x-1}{x^2}=\frac{9x^2-\left(4x^2-4x+1\right)}{x^2}=9-\frac{\left(2x-1\right)^2}{x^2}\le9\)
Dấu \(=\)khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
\(B=\frac{x^2}{x^2+x+1}=\frac{3x^2}{3x^2+3x+3}=\frac{4x^2+4x+4-\left(x^2+4x+4\right)}{3x^2+3x+3}=\frac{4}{3}-\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\le\frac{4}{3}\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
Tìm GTLN của biểu thức: x^2/x^4+x^2+1a
Bạn coi lại đề bài, mẫu số đoạn \(x^2+1a\) là sao nhỉ?
a) Tìm GTNN của biểu thức A = x − 2018 + − 100 + x − 2019
b) Tìm GTLN của biểu thức B = 4 − 5 x − 2 − 3 y + 12