Những câu hỏi liên quan
PB
Xem chi tiết
CT
24 tháng 5 2018 lúc 16:55

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 8 2017 lúc 16:14

Chọn A

Do B, I, K thẳng hàng, trong DABN kẻ MF//BI, FÎAN

=>F là trung điểm của AI. Suy ra BI/BK =4/3

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 2 2019 lúc 12:40

Đáp án C

Theo tỉ số thể tích ta có:

Bình luận (0)
H24
Xem chi tiết
QL
23 tháng 8 2023 lúc 12:47

Xét tam giác SAB ta có: MN là đường trung bình suy ra MN // AB.

Tương tự ta có: NP // BC, PQ // CD, MQ // AD.

Mà ABCD là hình bình hành nên AB // CD, AD// CD, suy ra MN // PQ, MQ // NP.

Như vậy, MNPQ là hình bình hành.

Bình luận (0)
TT
Xem chi tiết
H24
25 tháng 6 2023 lúc 20:19

Tự vẽ hình nhé!

Ta có:

\(V_{OBCNM}=\dfrac{1}{3}d\left(O;\left(BCNM\right)\right).S_{BCNM}=\dfrac{1}{3}.\dfrac{1}{2}d\left(A;\left(SBC\right)\right).\dfrac{3}{4}S_{SBC}=\dfrac{1}{8}V_{SABC}=\dfrac{1}{16}V_{SABCD}\)

\(\Rightarrow\dfrac{V_{OBCNM}}{V_{SABCD}}=\dfrac{1}{16}\)

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 2 2018 lúc 12:06

Đáp án B

Trong mặt phẳng (ABCD) gọi I là giao điểm của MD và BC

Trong mặt phẳng (SBC) gọi K là giao điểm của IN và SB

Khi đó ta có: (MND) ∩  (SAB) = KM

                      (MND)  (ABCD) = MD

                      (MND)  (SBC) = KN

                      (MND)  (SCD) = ND

Vậy thiết diện của mặt phẳng (MND) với hình chóp là tứ giác NDMK.

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 4 2018 lúc 4:27

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 11 2017 lúc 14:10

Bình luận (0)
TG
Xem chi tiết
NT
15 tháng 1 2023 lúc 0:53

Gọi giao của AC và BD là O

\(\left\{{}\begin{matrix}O\in AC\subset\left(SAC\right)\\O\in BD\subset\left(SBD\right)\end{matrix}\right.\Leftrightarrow O\in\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}S\in\left(SAC\right)\\S\in\left(SBD\right)\end{matrix}\right.\Leftrightarrow S\in\left(SAC\right)\cap\left(SBD\right)\)

=>(SAC) giao (SBD)=SO

Bình luận (0)