Những câu hỏi liên quan
TK
Xem chi tiết
DL
11 tháng 5 2022 lúc 4:42

BN THAM KHẢO:

undefined

 

Bình luận (0)
FD
Xem chi tiết
DN
12 tháng 7 2020 lúc 20:20

thx ban

Bình luận (0)
 Khách vãng lai đã xóa
LT
21 tháng 4 2021 lúc 16:38

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
BA
Xem chi tiết
CK
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
H24
20 tháng 4 2016 lúc 21:15

khá là khó

Bình luận (0)
NC
16 tháng 6 2017 lúc 12:48

Bài này lớp 6 mà bạn

Đặt c1=a1-b1, ... , c5=a5-b5.

Có c1+ c+ ...+ c5

= (a1-b1)+(a2-b2)+...+(a5-b5)

= (a1+a2+...+a5)-(b1+b2+...+b5)

=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)

=> Trong 5 số c1,...,ccó một số chẵn vì từ c1 đến c5 có 5 số

=> Trong các số a1-b1,...,a2-bcó một số chẵn

Vậy ... (đpcm)

Bình luận (0)
BV
13 tháng 1 2021 lúc 20:38

lớp 6 con mịe mày

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
DX
Xem chi tiết
TP
11 tháng 3 2021 lúc 14:30

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

Bình luận (4)
OP
11 tháng 3 2021 lúc 17:51

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.

 

 

Bình luận (0)
FF
3 tháng 11 2024 lúc 12:19

Ngữ thế cũng ko biết ở trong đây toàn bọn ngu🐕🐕🐕🐕🐕🐕🐶🐶🐒🐒🐒

Bình luận (1)