Những câu hỏi liên quan
PA
Xem chi tiết
TC
Xem chi tiết
MN
20 tháng 2 2021 lúc 16:37

\(a.\)

\(\dfrac{x}{2}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)

\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)

\(b.\)

\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)

\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)

\(c.\)

\(\dfrac{x}{4}=\dfrac{y}{5}\)

\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)

Bình luận (0)
NT
20 tháng 2 2021 lúc 19:57

a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=35

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)

Vậy: (x,y)=(10;25)

b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)

nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)

hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)

mà y-3x=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

Vậy: (x,y)=(1;5)

c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)

nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)

mà 2x-y=15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)

Vậy: (x,y)=(20;25)

Bình luận (0)
PN
Xem chi tiết
NV
5 tháng 8 2023 lúc 17:58

a) \(2^x=8\)

⇔ \(2^x=2^3\)

⇒ \(x=3\)

b) \(3^x=27\)

⇔ \(3^x=3^3\)

⇒ \(x=3\)

c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)

d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)

d) \(\left(x+1\right)^3=-125\)

⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)

⇔ \(x+1=-5\)

⇔ \(x=-5-1=-6\)

Bình luận (1)
NT
5 tháng 8 2023 lúc 18:05

2:

a: (x-1,2)^2=4

=>x-1,2=2 hoặc x-1,2=-2

=>x=3,2(loại) hoặc x=-0,8(loại)

b: (x-1,5)^2=9

=>x-1,5=3 hoặc x-1,5=-3

=>x=-1,5(loại) hoặc x=4,5(loại)

c: (x-2)^3=64

=>(x-2)^3=4^3

=>x-2=4

=>x=6(nhận)

Bình luận (0)
DH
Xem chi tiết
NT
19 tháng 12 2021 lúc 18:44

Bài 1: 

a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

Bình luận (0)
LT
Xem chi tiết
H24
Xem chi tiết
NK
16 tháng 1 2021 lúc 14:30

\(a,x\left(y-2\right)=8\\ \Rightarrow x;\left(y-2\right)\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(x\)\(-8\)\(-4\)\(-2\)\(-1\)\(1\)\(2\)\(4\)\(8\)
\(y-2\)\(-1\)\(-2\)\(-4\)\(-8\)\(8\)\(4\)\(2\)\(1\)
\(y\)\(1\)\(0\)\(-2\)\(-6\)\(10\)\(6\)\(4\)\(3\)

Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-4;0\right),\left(-2;-2\right),\left(-1;-6\right),\left(2;6\right),\left(4;4\right),\left(8;3\right)\)

 

 

 

 

 

 

 

Bình luận (0)
NK
16 tháng 1 2021 lúc 14:36

\(b,\left(x-1\right)\left(y-2\right)=9\\ \Rightarrow\left(x-1\right),\left(y-2\right)\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)

\(x-1\)\(-9\)\(-3\)\(-1\)\(1\)\(3\)\(9\)
\(y-2\)\(-1\)\(-3\)\(-9\)\(9\)\(3\)\(1\)
\(x\)\(-8\)\(-2\)\(0\)\(2\)\(4\)\(10\)
\(y\)\(1\)\(-1\)\(-7\)\(11\)\(5\)\(3\)

Vậy \(\left(x;y\right)=\left(-8;1\right),\left(-2;-1\right),\left(0;-7\right),\left(2;11\right),\left(4;5\right),\left(10;3\right)\)

 

Bình luận (1)
NK
16 tháng 1 2021 lúc 14:38

\(c,\left(x+1\right)\left(y-2\right)=15\\ \Rightarrow\left(x+1\right),\left(y-2\right)\inƯ\left(15\right)=\left\{-15;-1;1;15\right\}\)

\(x+1\)\(-15\)\(-1\)\(1\)\(15\)
\(y-2\)\(-1\)\(-15\)\(15\)\(1\)
\(x\)\(-16\)\(-2\)\(0\)\(14\)
\(y\)\(1\)\(-13\)\(17\)\(3\)

 

Vậy \(\left(x;y\right)=\left(-16;1\right),\left(-2;-13\right),\left(0;17\right),\left(14;3\right)\)

 

Bình luận (0)
YP
Xem chi tiết
DC
Xem chi tiết
DC
16 tháng 2 2020 lúc 8:33

giúp mik dzới

Bình luận (0)
YP
Xem chi tiết
TT
17 tháng 11 2021 lúc 21:10

a,Ta có:

\(\dfrac{x}{y}=\dfrac{7}{4}=\dfrac{x}{7}=\dfrac{y}{4}\)

ÁP dụng tcdtsbn , ta có:

\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=21\\y=12\end{matrix}\right.\)

b,

\(\Rightarrow3.\left(x-1\right)=-24\)

\(\Rightarrow x-1=-8\)

\(\Rightarrow x=-7\)

Bình luận (0)
H24
17 tháng 11 2021 lúc 21:11

A)\(\dfrac{x}{y}=\dfrac{7}{4}\Rightarrow\dfrac{x}{7}=\dfrac{y}{4}\)

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)

\(\dfrac{x}{7}=3\Rightarrow x=21\\ \dfrac{y}{4}=3\Rightarrow y=12\)

B) \(3\left(x-1\right)+5=-19\\ \Rightarrow3\left(x-1\right)=-24\\ \Rightarrow x-1=-8\\ \Rightarrow x=-7\)

Bình luận (0)
MD
Xem chi tiết

Giải:

a) \(y^2=3-\left|2x-3\right|\) 

Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )

TH1:

\(y^2=0\) 

\(\Rightarrow y=0\) 

\(\Rightarrow\left|2x-3\right|=3\) 

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) 

TH2:

\(y^2=1\) 

\(\Rightarrow y=\pm1\)

Bình luận (1)

Giải:

a) \(y^2=3-\left|2x-3\right|\) 

Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )

TH1:

\(y^2=0\) 

\(\Rightarrow y=0\) 

\(\Rightarrow3-\left|2x-3\right|=0\) 

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (t/m)

TH2:

\(y^2=1\) 

\(\Rightarrow y=\pm1\) 

\(\Rightarrow\left[{}\begin{matrix}3-\left|2x-3\right|=1\\3-\left|2x-3\right|=-1\end{matrix}\right.\) 

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\\x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\) (loại vì \(x;y\in Z\) ) 

b) \(2.y^2=3-\left|x+4\right|\) 

Vì \(-\left|x+4\right|\le0\forall x\) nên \(3-\left|x+4\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )

TH1:

\(y^2=0\)  

\(\Rightarrow y=0\)

\(\Rightarrow3-\left|x+4\right|=0\) 

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\) (t/m)

TH2:

\(y^2=1\) 

\(\Rightarrow3-\left|x+4\right|=2\) 

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\) (t/m)

c) \(25-y^2=8.\left(x-2021\right)^2\) 

Vì \(\left(x-2021\right)^2\le0\forall x\) nên \(8.\left(x-2021\right)^2\le0\forall x\) nên \(y^2\in\left\{0\right\}\) (vì \(y\in Z\) )

\(y^2=0\) 

\(\Rightarrow8.\left(x-2021\right)^2=25\) 

Vì \(\dfrac{25}{8}\) ko có p/s mũ 2 nên \(x\in\) ∅

Chúc bạn học tốt!

Bình luận (0)

Vì -/2x-3/< 0 với mọi x nên 3-/2x-3/< 3 với mọi x -> y2< 3 -> y2 thuộc {0;1} ( vì y thuộc z)

Th1: y2=0-> y=0-> /2x-3/=3-> 2x-3=3 hoặc 2x-3=-3<-> x=0 hoặc x=3

Th2: y2=1-> y=+ 1-> /2x-3/=2-> 2x-3=2 hoặc 2x-3=-2 (loại vì x nguyên)

Câc câu còn lại bạn làm tương tự nhé

Chúc bạn học tốt!

Bình luận (0)