Những câu hỏi liên quan
PK
Xem chi tiết
ND
18 tháng 11 2016 lúc 19:28

19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = 7+\frac{7x}{y+z}+7+\frac{7y}{z+x}+7+\frac{7z}{z+y} - 21 \\ \\ 19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = \frac{7(x+y+z)}{x+y}+\frac{7(x+y+z)}{y+z}+\frac{7(z+y+z)}{x+z} - 21 \\ \\ 19(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) = 7(x+y+z).(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}) - 21 \\ \\ \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z} = t \\ \\ \Rightarrow 19t = 7(x+y+z).t -21 = \frac{133}{10} \\ \\ 19t = \frac{133}{10} \Rightarrow t = \frac{7}{10} \\ \\ \Rightarrow 7(x+y+z).\frac{7}{10} -21 = \frac{133}{10} \Rightarrow M = x+y+z = 7

Bình luận (0)
HL
7 tháng 7 2017 lúc 10:35

ban nguyen dan go the nao ra toan ki hieu la the


 

Bình luận (0)
NG
Xem chi tiết
DL
23 tháng 11 2017 lúc 15:22

tìm x,y,x nha m.n

Bình luận (0)
PU
Xem chi tiết
TH
Xem chi tiết
AH
13 tháng 6 2018 lúc 19:32

Lời giải:

Ta có: \(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)

\(\Rightarrow \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{7}{10}(*)\)

Lại có:

\(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)

\(\Rightarrow \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{19}{10}\)

\(\Rightarrow \frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1=\frac{19}{10}+3=\frac{49}{10}\)

\(\Leftrightarrow \frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}=\frac{49}{10}\)

\(\Leftrightarrow (x+y+z)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{49}{10}(**)\)

Từ \((*);(**)\Rightarrow M=x+y+z=7\)

Bình luận (0)
TH
Xem chi tiết
AH
19 tháng 4 2018 lúc 0:05

Lời giải:

Ta có:

\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)

\(\Leftrightarrow \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{7}{10}(*)\)

Và: \(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)

\(\Leftrightarrow \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{19}{10}\)

\(\Rightarrow \frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1=\frac{49}{10}\)

\(\Leftrightarrow \frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}=\frac{49}{10}\)

\(\Leftrightarrow (x+y+z)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)=\frac{49}{10}(**)\)

Từ \((*); (**)\Rightarrow x+y+z=\frac{49}{10}:\frac{7}{10}=7\)

Vậy $M=7$

Bình luận (0)
HF
Xem chi tiết
NH
Xem chi tiết
ND
25 tháng 10 2017 lúc 21:13

\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{x+z}=\dfrac{133}{10}\\ \Rightarrow19.\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{133}{10}\\ \Rightarrow\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=\dfrac{7}{10}\)

\(\dfrac{7x}{y+z}+\dfrac{7z}{x+y}+\dfrac{7y}{x+z}=\dfrac{133}{10}\\ \Rightarrow\dfrac{x}{y+z}+\dfrac{z}{x+y}+\dfrac{y}{x+z}=\dfrac{133}{10}:7=\dfrac{19}{10}\\ \Rightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{z}{x+y}+1\right)+\left(\dfrac{y}{x+z}+1\right)=\dfrac{49}{10}\\ \Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)=\dfrac{49}{10}\\ \Rightarrow\left(x+y+z\right).\dfrac{7}{10}=\dfrac{49}{10}\\ \Rightarrow x+y+z=7\)

Bình luận (0)
DH
Xem chi tiết
NN
17 tháng 8 2018 lúc 20:53

mình nghĩ bạn chép sai đề bài

dấu ''='' thứ 2 thay bằng dấu ''+''

ta có

\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{x+z}=\dfrac{133}{10}\)

\(\Rightarrow19\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=\dfrac{7}{10}\)

lại có

\(\dfrac{7x}{y+z}+\dfrac{7y}{x+z}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)

\(\Rightarrow7\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{19}{10}\)

\(\Rightarrow\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}=\dfrac{49}{10}\)

\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{49}{10}\)

\(\Rightarrow\dfrac{7}{10}\left(x+y+z\right)=\dfrac{49}{10}\Rightarrow\left(x+y+z\right)^2=49.\)

Bình luận (0)
RB
Xem chi tiết
KN
10 tháng 2 2020 lúc 19:24

\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)

\(\Rightarrow19\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{133}{10}\)

\(\Rightarrow\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{7}{10}\)

\(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)

\(\Rightarrow7\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{133}{10}\)

\(\Rightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{19}{10}\)

\(\Rightarrow\left(\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\right)=\frac{19}{10}+3\)

\(\Rightarrow\left(\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\right)=\frac{49}{10}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)=\frac{49}{10}\)

\(\Rightarrow\left(x+y+z\right).\frac{7}{10}=\frac{49}{10}\)

\(\Rightarrow x+y+z=7\)

Vậy x + y + z = 7

Bình luận (0)
 Khách vãng lai đã xóa